IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2001832.html
   My bibliography  Save this article

A new explanation for unexpected evolution in body size

Author

Listed:
  • Loeske E B Kruuk

Abstract

Bigger is apparently frequently fitter, and body size is typically heritable, so why don’t animals in wild populations evolve towards larger sizes? Different explanations have been proposed for this apparent “paradox of stasis.” A new study of snow voles in the Swiss Alps finds higher survival in animals with larger body mass and heritability of body mass, but, surprisingly, a genetic decline in body mass is also indicated. The authors suggest a novel explanation for this observation: the appearance of positive phenotypic selection is driven by a confounding variable of the age at which a juvenile is measured, whereas the evolutionarily relevant selection actually acts negatively on mass via its association with development time. Thus, genes for larger mass are not actually “fitter” because they are associated with longer development times, and juvenile snow voles with longer development times run the risk of not completing development before the first winter snow. However, the genetic decline in body size is not apparent at the phenotypic level, presumably because of countervailing trends in environmental effects on the phenotype.

Suggested Citation

  • Loeske E B Kruuk, 2017. "A new explanation for unexpected evolution in body size," PLOS Biology, Public Library of Science, vol. 15(2), pages 1-6, February.
  • Handle: RePEc:plo:pbio00:2001832
    DOI: 10.1371/journal.pbio.2001832
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2001832
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2001832&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2001832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey E. Lane & Loeske E. B. Kruuk & Anne Charmantier & Jan O. Murie & F. Stephen Dobson, 2012. "Delayed phenology and reduced fitness associated with climate change in a wild hibernator," Nature, Nature, vol. 489(7417), pages 554-557, September.
    2. Arpat Ozgul & Dylan Z. Childs & Madan K. Oli & Kenneth B. Armitage & Daniel T. Blumstein & Lucretia E. Olson & Shripad Tuljapurkar & Tim Coulson, 2010. "Coupled dynamics of body mass and population growth in response to environmental change," Nature, Nature, vol. 466(7305), pages 482-485, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitrii O. Logofet & Leonid L. Golubyatnikov & Nina G. Ulanova, 2020. "Realistic Choice of Annual Matrices Contracts the Range of λ S Estimates," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    2. Vindenes, Yngvild & Sæther, Bernt-Erik & Engen, Steinar, 2012. "Effects of demographic structure on key properties of stochastic density-independent population dynamics," Theoretical Population Biology, Elsevier, vol. 82(4), pages 253-263.
    3. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    4. Maldonado-Chaparro, Adriana A. & Read, Dwight W. & Blumstein, Daniel T., 2017. "Can individual variation in phenotypic plasticity enhance population viability?," Ecological Modelling, Elsevier, vol. 352(C), pages 19-30.
    5. Tourinho, Luara & Sinervo, Barry & Caetano, Gabriel Henrique de Oliveira & Vale, Mariana M., 2021. "A less data demanding ecophysiological niche modeling approach for mammals with comparison to conventional correlative niche modeling," Ecological Modelling, Elsevier, vol. 457(C).
    6. Basak, Gopal K. & Das, Pranab Kumar & Rohit, Allena, 2019. "Coupled dynamics with an external system and application to international finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 409-432.
    7. Beatriz C. Afonso & Gonçalo Matias & Daniela Teixeira & Rita Pereira & Luís M. Rosalino, 2023. "Determinants of Small Mammals’ Body Condition in Eucalyptus Dominated Landscapes," Sustainability, MDPI, vol. 16(1), pages 1-14, December.
    8. Domenico Fulgione & Maria Buglione, 2022. "The Boar War: Five Hot Factors Unleashing Boar Expansion and Related Emergency," Land, MDPI, vol. 11(6), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2001832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.