IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v59y2008i4d10.1057_palgrave.jors.2602436.html
   My bibliography  Save this article

A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing

Author

Listed:
  • R Tavakkoli-Moghaddam

    (University of Tehran
    The University of British Columbia)

  • N Safaei

    (Iran University of Science and Technology
    The University of British Columbia)

  • F Sassani

    (The University of British Columbia)

Abstract

This paper presents an integer-linear programming approach for a cell formation problem (CFP) in a dynamic environment with a multi-period planning horizon. The objectives are to minimize the inter-cell movement and machine costs simultaneously. In dynamic environments, the product mix and demand are different but deterministic in each period. As a consequence, the formed cells in the current period may not be optimal for the next period. Thus, the reconfiguration of cells is required. Reconfiguration consists of re-forming part families, machine groups, and machine relocation. The CFP belongs to the category of NP-hard problems, thus we develop an efficient simulated annealing (SA) method to solve such a problem. The proposed mathematical model is optimally solved and the associated results are compared with the results obtained by the SA run. The results show that the gap between optimal and SA solutions is less than 4%, which indicates the efficiency of the developed SA scheme.

Suggested Citation

  • R Tavakkoli-Moghaddam & N Safaei & F Sassani, 2008. "A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 443-454, April.
  • Handle: RePEc:pal:jorsoc:v:59:y:2008:i:4:d:10.1057_palgrave.jors.2602436
    DOI: 10.1057/palgrave.jors.2602436
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602436
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montreuil, Benoit & Laforge, Andree, 1992. "Dynamic layout design given a scenario tree of probable futures," European Journal of Operational Research, Elsevier, vol. 63(2), pages 271-286, December.
    2. W.E. Wilhelm & C.C. Chiou & D.B. Chang, 1998. "Integrating design and planning considerations in cellular manufacturing," Annals of Operations Research, Springer, vol. 77(0), pages 97-107, January.
    3. Mingyuan Chen, 1998. "A mathematical programming model for system reconfiguration in a dynamic cellular manufacturing environment," Annals of Operations Research, Springer, vol. 77(0), pages 109-128, January.
    4. Xambre, Ana R. & Vilarinho, Pedro M., 2003. "A simulated annealing approach for manufacturing cell formation with multiple identical machines," European Journal of Operational Research, Elsevier, vol. 151(2), pages 434-446, December.
    5. Caux, C. & Bruniaux, R. & Pierreval, H., 2000. "Cell formation with alternative process plans and machine capacity constraints: A new combined approach," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 279-284, March.
    6. Adil, Gajendra K. & Rajamani, Divakar & Strong, Doug, 1993. "A mathematical model for cell formation considering investment and operational costs," European Journal of Operational Research, Elsevier, vol. 69(3), pages 330-341, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papaioannou, Grammatoula & Wilson, John M., 2010. "The evolution of cell formation problem methodologies based on recent studies (1997-2008): Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 206(3), pages 509-521, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Defersha, Fantahun M. & Chen, Mingyuan, 2006. "A comprehensive mathematical model for the design of cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 767-783, October.
    2. Shruti Shashikumar & Rakesh D. Raut & Vaibhav S. Narwane & Bhaskar B. Gardas & Balkrishna E. Narkhede & Anjali Awasthi, 2019. "A novel approach to determine the cell formation using heuristics approach," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 628-656, September.
    3. Safaei, N. & Saidi-Mehrabad, M. & Jabal-Ameli, M.S., 2008. "A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system," European Journal of Operational Research, Elsevier, vol. 185(2), pages 563-592, March.
    4. Ah kioon, Steve & Bulgak, Akif Asil & Bektas, Tolga, 2009. "Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration," European Journal of Operational Research, Elsevier, vol. 192(2), pages 414-428, January.
    5. M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
    6. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    7. Yang, Miin-Shen & Yang, Jenn-Hwai, 2008. "Machine-part cell formation in group technology using a modified ART1 method," European Journal of Operational Research, Elsevier, vol. 188(1), pages 140-152, July.
    8. Nsakanda, Aaron Luntala & Diaby, Moustapha & Price, Wilson L., 2006. "Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1051-1070, June.
    9. Andreas Hottenrott & Martin Grunow, 2019. "Flexible layouts for the mixed-model assembly of heterogeneous vehicles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 943-979, December.
    10. Defersha, Fantahun M. & Chen, Mingyuan, 2008. "A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality," European Journal of Operational Research, Elsevier, vol. 187(1), pages 46-69, May.
    11. Saif Benjaafar & Sunderesh S. Heragu & Shahrukh A. Irani, 2002. "Next Generation Factory Layouts: Research Challenges and Recent Progress," Interfaces, INFORMS, vol. 32(6), pages 58-76, December.
    12. McKendall Jr., Alan R. & Hakobyan, Artak, 2010. "Heuristics for the dynamic facility layout problem with unequal-area departments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 171-182, February.
    13. Hachicha, Wafik & Masmoudi, Faouzi & Haddar, Mohamed, 2008. "A Taguchi method application for the part routing selection in Generalized Group Technology: A case Study," MPRA Paper 12376, University Library of Munich, Germany.
    14. Boutsinas, Basilis, 2013. "Machine-part cell formation using biclustering," European Journal of Operational Research, Elsevier, vol. 230(3), pages 563-572.
    15. Kumar, Sushil & Kant, Shashi, 2005. "Bureaucracy and new management paradigms: modeling foresters' perceptions regarding community-based forest management in India," Forest Policy and Economics, Elsevier, vol. 7(4), pages 651-669, May.
    16. Dunker, Thomas & Radons, Gunter & Westkamper, Engelbert, 2005. "Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 55-69, August.
    17. Manojit Chattopadhyay & Sourav Sengupta & B.S. Sahay, 2016. "Visual hierarchical clustering of supply chain using growing hierarchical self-organising map algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2552-2571, May.
    18. Hachicha, Wafik & Masmoudi, Faouzi & Haddar, Mohamed, 2006. "Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach," MPRA Paper 3975, University Library of Munich, Germany, revised 04 Jan 2007.
    19. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    20. Balakrishnan, Jaydeep & Cheng, Chun Hung, 2007. "Multi-period planning and uncertainty issues in cellular manufacturing: A review and future directions," European Journal of Operational Research, Elsevier, vol. 177(1), pages 281-309, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:59:y:2008:i:4:d:10.1057_palgrave.jors.2602436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.