IDEAS home Printed from https://ideas.repec.org/a/pal/assmgt/v19y2018i7d10.1057_s41260-018-0096-5.html
   My bibliography  Save this article

Is high active share always good?

Author

Listed:
  • Giuliano De Rossi

    (Macquarie)

  • Gurvinder Brar

    (Macquarie)

Abstract

More and more asset managers are committing to an explicit active share target, which takes the form of a lower bound (e.g. at least 75%) or a range of values (e.g. between 75 and 85%). The active share target is used either in conjunction with, or as a substitute for a tracking error limit. We analyse the implications of active share targets on the portfolio construction process using a simple optimisation framework. Our results suggest, counter to conventional wisdom, that in certain situations the portfolio construction process benefits from imposing a limit on active share rather than from boosting active share. In particular, if the signal used in a strategy is weak, then a constraint on active share can help mitigate the effects of model uncertainty.

Suggested Citation

  • Giuliano De Rossi & Gurvinder Brar, 2018. "Is high active share always good?," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 460-471, December.
  • Handle: RePEc:pal:assmgt:v:19:y:2018:i:7:d:10.1057_s41260-018-0096-5
    DOI: 10.1057/s41260-018-0096-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41260-018-0096-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41260-018-0096-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    2. K. J. Martijn Cremers & Antti Petajisto, 2009. "How Active Is Your Fund Manager? A New Measure That Predicts Performance," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3329-3365, September.
    3. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    4. Martijn Cremers & Antti Petajisto, 2006. "How Active is Your Fund Manager? A New Measure That Predicts Performance," Yale School of Management Working Papers amz2370, Yale School of Management, revised 01 May 2009.
    5. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    6. Sebastián Ceria & Robert A Stubbs, 2006. "Incorporating estimation errors into portfolio selection: Robust portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 7(2), pages 109-127, July.
    7. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    8. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    2. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    3. Jiahan Li, 2015. "Sparse and Stable Portfolio Selection With Parameter Uncertainty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 381-392, July.
    4. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    5. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    6. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    7. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2025. "Mesoscopic structure of the stock market and portfolio optimization," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 20(2), pages 307-333, April.
    8. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    9. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    10. Yilie Huang & Yanwei Jia & Xun Yu Zhou, 2024. "Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study," Papers 2412.16175, arXiv.org, revised Aug 2025.
    11. Pun, Chi Seng & Wong, Hoi Ying, 2019. "A linear programming model for selection of sparse high-dimensional multiperiod portfolios," European Journal of Operational Research, Elsevier, vol. 273(2), pages 754-771.
    12. Yuezhang Che & Shuyan Chen & Xin Liu, 2022. "Sparse Index Tracking Portfolio with Sector Neutrality," Mathematics, MDPI, vol. 10(15), pages 1-22, July.
    13. Xia, Siwei & Yang, Yuehan & Yang, Hu, 2023. "High-dimensional sparse portfolio selection with nonnegative constraint," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    14. Burkhardt, Raphael & Ulrych, Urban, 2023. "Sparse and stable international portfolio optimization and currency risk management," Journal of International Money and Finance, Elsevier, vol. 139(C).
    15. Hafner, Christian M. & Wang, Linqi, 2024. "Dynamic portfolio selection with sector-specific regularization," Econometrics and Statistics, Elsevier, vol. 32(C), pages 17-33.
    16. Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
    17. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    18. Qifa Xu & Junqing Zuo & Cuixia Jiang & Yaoyao He, 2021. "A large constrained time‐varying portfolio selection model with DCC‐MIDAS: Evidence from Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3417-3435, July.
    19. Chavez-Bedoya, Luis & Rosales, Francisco, 2021. "Reduction of estimation risk in optimal portfolio choice using redundant constraints," International Review of Financial Analysis, Elsevier, vol. 78(C).
    20. Zhao Zhao & Olivier Ledoit & Hui Jiang, 2019. "Risk reduction and efficiency increase in large portfolios: leverage and shrinkage," ECON - Working Papers 328, Department of Economics - University of Zurich, revised Jan 2020.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:assmgt:v:19:y:2018:i:7:d:10.1057_s41260-018-0096-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.