IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v2y2019i7d10.1038_s41893-019-0328-9.html
   My bibliography  Save this article

Designing car bans for sustainable transportation

Author

Listed:
  • Patrick Plötz

    (Fraunhofer Institute for Systems and Innovation Research ISI)

  • Jonn Axsen

    (Simon Fraser University)

  • Simon A. Funke

    (Fraunhofer Institute for Systems and Innovation Research ISI)

  • Till Gnann

    (Fraunhofer Institute for Systems and Innovation Research ISI)

Abstract

Car bans could contribute to both climate change and air-quality goals. However, most car bans announced to date lack enforcement mechanisms and are therefore not bans at all. Here, we provide recommendations to design car bans as a more-effective policy tool for sustainability.

Suggested Citation

  • Patrick Plötz & Jonn Axsen & Simon A. Funke & Till Gnann, 2019. "Designing car bans for sustainable transportation," Nature Sustainability, Nature, vol. 2(7), pages 534-536, July.
  • Handle: RePEc:nat:natsus:v:2:y:2019:i:7:d:10.1038_s41893-019-0328-9
    DOI: 10.1038/s41893-019-0328-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0328-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0328-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "How to design a zero-emissions vehicle mandate? Simulating impacts on sales, GHG emissions and cost-effectiveness using the AUtomaker-Consumer Model (AUM)," Transport Policy, Elsevier, vol. 117(C), pages 152-168.
    2. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    3. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    4. Chen, Dongxu & Sun, Yu & Yang, Zhongzhen, 2020. "Optimization of the travel ban scheme of cars based on the spatial distribution of the last digit of license plates," Transport Policy, Elsevier, vol. 94(C), pages 43-53.
    5. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    6. Christian Thiel & Anastasios Tsakalidis & Arnulf Jäger-Waldau, 2020. "Will Electric Vehicles Be Killed (again) or Are They the Next Mobility Killer App?," Energies, MDPI, vol. 13(7), pages 1-10, April.
    7. Latino, Carmelo & Pelizzon, Loriana & Riedel, Max, 2023. "How to green the European Auto ABS market? A literature survey," SAFE Working Paper Series 391, Leibniz Institute for Financial Research SAFE.
    8. Griffiths, S. & Furszyfer Del Rio, D. & Sovacool, B., 2021. "Policy mixes to achieve sustainable mobility after the COVID-19 crisis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Sugihara, Claire & Hardman, Scott & Chakraborty, Debapriya & Figenbaum, Erik & Beard, George & Boutueil, Virginie & Daina, Nicolò & Dütschke, Elisabeth & Hyun Lee, Jae & Refa, Nazir & Sovacool, Benjam, 2022. "Supporting Plug-in Electric Vehicle Adoption in Light-duty Fleets," Institute of Transportation Studies, Working Paper Series qt8jf994zw, Institute of Transportation Studies, UC Davis.
    10. Zimm, Caroline, 2021. "Improving the understanding of electric vehicle technology and policy diffusion across countries," Transport Policy, Elsevier, vol. 105(C), pages 54-66.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:2:y:2019:i:7:d:10.1038_s41893-019-0328-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.