IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64551-3.html
   My bibliography  Save this article

Unconventional bias-dependent tunneling magnetoresistance in van der Waals ferromagnetic/semiconductor heterojunctions

Author

Listed:
  • Wenkai Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hui Wen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shouguo Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qirui Cui

    (AlbaNova University Center)

  • Shihong Xie

    (Chinese Academy of Sciences
    University of Nottingham)

  • Meng Ye

    (Chinese Academy of Sciences)

  • Gaojie Zhang

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology)

  • Hao Wu

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology)

  • Xiaomin Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Weihao Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuqing Huang

    (Chinese Academy of Sciences)

  • Jing Zhang

    (Chinese Academy of Sciences)

  • Lixia Zhao

    (Tiangong University)

  • Amalia Patanè

    (University of Nottingham)

  • Haixin Chang

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology)

  • Lin-Wang Wang

    (Chinese Academy of Sciences)

  • Kaiyou Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Two-dimensional van der Waals (vdW) ferromagnetic/semiconductor heterojunctions provide an ideal platform for studying and exploiting tunneling magnetoresistance (TMR) effects, due to the versatile band structure of semiconductors and high quality of their interfaces. In all-vdW magnetic tunnel junction (MTJ) devices, both the magnitude and sign of TMR can be tuned by an applied voltage. Typically, as the bias voltage increases, the amplitude of TMR initially decreases, followed by a reversal and/or oscillation in its sign. Herein, we report on an unconventional bias-dependent TMR observed in all-vdW Fe3GaTe2/GaSe/Fe3GaTe2 MTJs, where TMR first increases, then decreases, and ultimately undergoes a sign reversal as the bias voltage increases. By considering the coherent degree of in-plane electron momentum $${{{{\bf{k}}}}}_{{{\parallel }}}$$ k ∥ and the decay of the electron wave function through the semiconductor spacer layer, our theoretical prediction successfully explains this unconventional bias-dependent TMR. Consequently, our results offer a deeper understanding of bias-dependent spin-transport in semiconductor-based MTJs and provide new insights into semiconductor spintronics.

Suggested Citation

  • Wenkai Zhu & Hui Wen & Shouguo Zhu & Qirui Cui & Shihong Xie & Meng Ye & Gaojie Zhang & Hao Wu & Xiaomin Zhang & Weihao Li & Yuqing Huang & Jing Zhang & Lixia Zhao & Amalia Patanè & Haixin Chang & Lin, 2025. "Unconventional bias-dependent tunneling magnetoresistance in van der Waals ferromagnetic/semiconductor heterojunctions," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64551-3
    DOI: 10.1038/s41467-025-64551-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64551-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64551-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pambiang Abel Dainone & Nicholas Figueiredo Prestes & Pierre Renucci & Alexandre Bouché & Martina Morassi & Xavier Devaux & Markus Lindemann & Jean-Marie George & Henri Jaffrès & Aristide Lemaitre & B, 2024. "Author Correction: Controlling the helicity of light by electrical magnetization switching," Nature, Nature, vol. 629(8010), pages 8-8, May.
    2. Pambiang Abel Dainone & Nicholas Figueiredo Prestes & Pierre Renucci & Alexandre Bouché & Martina Morassi & Xavier Devaux & Markus Lindemann & Jean-Marie George & Henri Jaffrès & Aristide Lemaitre & B, 2024. "Controlling the helicity of light by electrical magnetization switching," Nature, Nature, vol. 627(8005), pages 783-788, March.
    3. Gaojie Zhang & Fei Guo & Hao Wu & Xiaokun Wen & Li Yang & Wen Jin & Wenfeng Zhang & Haixin Chang, 2022. "Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    5. Wenkai Zhu & Yingmei Zhu & Tong Zhou & Xianpeng Zhang & Hailong Lin & Qirui Cui & Faguang Yan & Ziao Wang & Yongcheng Deng & Hongxin Yang & Lixia Zhao & Igor Žutić & Kirill D. Belashchenko & Kaiyou Wa, 2023. "Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. F. Y. Bruno & M. N. Grisolia & C. Visani & S. Valencia & M. Varela & R. Abrudan & J. Tornos & A. Rivera-Calzada & A. A. Ünal & S. J. Pennycook & Z. Sefrioui & C. Leon & J. E. Villegas & J. Santamaria , 2015. "Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César González-Ruano & Chenghao Shen & Pablo Tuero & Coriolan Tiusan & Yuan Lu & Jong E. Han & Igor Žutić & Farkhad G. Aliev, 2025. "Giant shot noise in superconductor/ferromagnet junctions with orbital-symmetry- controlled spin-orbit coupling," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    2. Rodrigo Torrão Victor & Syed Hamza Safeer & John F. R. Marroquin & Marcio Costa & Jorlandio F. Felix & Victor Carozo & Luiz C. Sampaio & Flavio Garcia, 2025. "Disentangling edge and bulk spin-to-charge interconversion in MoS2 monolayer flakes," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Singh, Deobrat & Khossossi, Nabil & Lizárraga, Raquel & Sonvane, Yogesh, 2024. "Theoretical prediction of a high-performance two-dimensional type-II MoSi2N4/As vdW heterostructure for photovoltaic solar cells," Renewable Energy, Elsevier, vol. 237(PC).
    4. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Qinghai Tan & Abdullah Rasmita & Zhaowei Zhang & Xuran Dai & Ruihua He & Xiangbin Cai & Kenji Watanabe & Takashi Taniguchi & Hongbing Cai & Wei-bo Gao, 2025. "Enhanced coherence from correlated states in WSe2/MoS2 moiré heterobilayer," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    6. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Zhixin Yao & Huifeng Tian & U. Sasaki & Huacong Sun & Jingyi Hu & Guodong Xue & Ye Seul Jung & Ruijie Li & Zhenjiang Li & PeiChi Liao & Yihan Wang & Lina Yang Zhang & Ge Yin & Xuanyu Zhang & Yijie Luo, 2025. "Transferrable, wet-chemistry-derived high-k amorphous metal oxide dielectrics for two-dimensional electronic devices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    8. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Yu Ji & Guang-Ping Hao & Yong-Tao Tan & Wenqi Xiong & Yu Liu & Wenzhe Zhou & Dai-Ming Tang & Renzhi Ma & Shengjun Yuan & Takayoshi Sasaki & Marcelo Lozada-Hidalgo & Andre K. Geim & Pengzhan Sun, 2024. "High proton conductivity through angstrom-porous titania," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    11. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Hongrui Zhang & Yu-Tsun Shao & Xiang Chen & Binhua Zhang & Tianye Wang & Fanhao Meng & Kun Xu & Peter Meisenheimer & Xianzhe Chen & Xiaoxi Huang & Piush Behera & Sajid Husain & Tiancong Zhu & Hao Pan , 2024. "Spin disorder control of topological spin texture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Xiaowei Lv & Hualiang Lv & Yalei Huang & Ruixuan Zhang & Guanhua Qin & Yihui Dong & Min Liu & Ke Pei & Guixin Cao & Jincang Zhang & Yuxiang Lai & Renchao Che, 2024. "Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Xinrui Yang & Lu Han & Hongkai Ning & Shaoqing Xu & Bo Hao & Yi-Chi Li & Taotao Li & Yuan Gao & Shengjun Yan & Yueying Li & Chenyi Gu & Weisheng Li & Zhengbin Gu & Yingzhuo Lun & Yi Shi & Jian Zhou & , 2024. "Ultralow-pressure-driven polarization switching in ferroelectric membranes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Yuxiang Gao & Fenglin Deng & Ri He & Zhicheng Zhong, 2025. "Spontaneous curvature in two-dimensional van der Waals heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    17. Nikhil Mathur & Arunabh Mukherjee & Xingyu Gao & Jialun Luo & Brendan A. McCullian & Tongcang Li & A. Nick Vamivakas & Gregory D. Fuchs, 2022. "Excited-state spin-resonance spectroscopy of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − defect centers in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Md Gius Uddin & Susobhan Das & Abde Mayeen Shafi & Lei Wang & Xiaoqi Cui & Fedor Nigmatulin & Faisal Ahmed & Andreas C. Liapis & Weiwei Cai & Zongyin Yang & Harri Lipsanen & Tawfique Hasan & Hoon Hahn, 2024. "Broadband miniaturized spectrometers with a van der Waals tunnel diode," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Shivam N. Kajale & Thanh Nguyen & Corson A. Chao & David C. Bono & Artittaya Boonkird & Mingda Li & Deblina Sarkar, 2024. "Current-induced switching of a van der Waals ferromagnet at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64551-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.