IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63832-1.html
   My bibliography  Save this article

Distinct solvation patterns of OH− versus H3O+ charge defects at electrified gold/water interfaces govern their properties

Author

Listed:
  • Chanbum Park

    (Ruhr-Universität Bochum)

  • Soumya Ghosh

    (Ruhr-Universität Bochum
    Tata Institute of Fundamental Research Hyderabad)

  • Harald Forbert

    (Ruhr-Universität Bochum)

  • Dominik Marx

    (Ruhr-Universität Bochum)

Abstract

Understanding the solvation structures of OH− and H3O+ at metal interfaces is crucial for developing efficient electrochemical devices. In this paper, we present a detailed investigation of the solvation structures of OH− and H3O+ near gold electrodes under alkaline and acidic aqueous conditions, using ab initio molecular dynamics simulations at controlled surface charge density conditions. Our findings reveal that the adsorption tendencies of OH− and H3O+ are strongly influenced by the oscillating net atomic charge of water normal to the electrified interface in concert with the distinct solvation patterns of these charge defects. While OH− preferentially adsorbs onto the gold surface within the first water layer, the positive net atomic charge restricts the closest approach of H3O+ to beyond the first water layer. We unveil resting and active states that support charge transfer processes at the gold/water interface, which critically involve Au atoms in a unique Grotthuss-like mechanism.

Suggested Citation

  • Chanbum Park & Soumya Ghosh & Harald Forbert & Dominik Marx, 2025. "Distinct solvation patterns of OH− versus H3O+ charge defects at electrified gold/water interfaces govern their properties," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63832-1
    DOI: 10.1038/s41467-025-63832-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63832-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63832-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Muñoz-Santiburcio & Dominik Marx, 2016. "On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    2. Dominik Marx & Mark E. Tuckerman & Jürg Hutter & Michele Parrinello, 1999. "The nature of the hydrated excess proton in water," Nature, Nature, vol. 397(6720), pages 601-604, February.
    3. Eric Tyrode & Sanghamitra Sengupta & Adrien Sthoer, 2020. "Identifying Eigen-like hydrated protons at negatively charged interfaces," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Wenchao Sheng & Zhongbin Zhuang & Minrui Gao & Jie Zheng & Jingguang G. Chen & Yushan Yan, 2015. "Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    5. Wenming Tong & Mark Forster & Fabio Dionigi & Sören Dresp & Roghayeh Sadeghi Erami & Peter Strasser & Alexander J. Cowan & Pau Farràs, 2020. "Electrolysis of low-grade and saline surface water," Nature Energy, Nature, vol. 5(5), pages 367-377, May.
    6. Mark E. Tuckerman & Dominik Marx & Michele Parrinello, 2002. "The nature and transport mechanism of hydrated hydroxide ions in aqueous solution," Nature, Nature, vol. 417(6892), pages 925-929, June.
    7. Leanne D. Chen & Michal Bajdich & J. Mark P. Martirez & Caroline M. Krauter & Joseph A. Gauthier & Emily A. Carter & Alan C. Luntz & Karen Chan & Jens K. Nørskov, 2018. "Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Isis Ledezma-Yanez & W. David Z. Wallace & Paula Sebastián-Pascual & Victor Climent & Juan M. Feliu & Marc T. M. Koper, 2017. "Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes," Nature Energy, Nature, vol. 2(4), pages 1-7, April.
    9. Seung-Jae Shin & Dong Hyun Kim & Geunsu Bae & Stefan Ringe & Hansol Choi & Hyung-Kyu Lim & Chang Hyuck Choi & Hyungjun Kim, 2022. "On the importance of the electric double layer structure in aqueous electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Jieyang Jia & Linsey C. Seitz & Jesse D. Benck & Yijie Huo & Yusi Chen & Jia Wei Desmond Ng & Taner Bilir & James S. Harris & Thomas F. Jaramillo, 2016. "Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    11. Qilun Wang & Cong-Qiao Xu & Wei Liu & Sung-Fu Hung & Hong Yang & Jiajian Gao & Weizheng Cai & Hao Ming Chen & Jun Li & Bin Liu, 2020. "Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    12. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiqi Zhou & Wei Cao & Lu Shang & Yunxuan Zhao & Xuyang Xiong & Jianke Sun & Tierui Zhang & Jiayin Yuan, 2025. "Facilitating alkaline hydrogen evolution kinetics via interfacial modulation of hydrogen-bond networks by porous amine cages," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Hao Tan & Bing Tang & Ying Lu & Qianqian Ji & Liyang Lv & Hengli Duan & Na Li & Yao Wang & Sihua Feng & Zhi Li & Chao Wang & Fengchun Hu & Zhihu Sun & Wensheng Yan, 2022. "Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jon C. Wilson & Stavros Caratzoulas & Dionisios G. Vlachos & Yushan Yan, 2023. "Insights into solvent and surface charge effects on Volmer step kinetics on Pt (111)," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Kaian Sun & Xueyan Wu & Zewen Zhuang & Leyu Liu & Jinjie Fang & Lingyou Zeng & Junguo Ma & Shoujie Liu & Jiazhan Li & Ruoyun Dai & Xin Tan & Ke Yu & Di Liu & Weng-Chon Cheong & Aijian Huang & Yunqi Li, 2022. "Interfacial water engineering boosts neutral water reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Wan Jae Dong & Yixin Xiao & Ke R. Yang & Zhengwei Ye & Peng Zhou & Ishtiaque Ahmed Navid & Victor S. Batista & Zetian Mi, 2023. "Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    9. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    10. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    12. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    14. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Philipp Fey & Daniel Ludwig Weber & Jannik Stebani & Philipp Mörchel & Peter Jakob & Jan Hansmann & Karl-Heinz Hiller & Daniel Haddad, 2023. "Non-destructive classification of unlabeled cells: Combining an automated benchtop magnetic resonance scanner and artificial intelligence," PLOS Computational Biology, Public Library of Science, vol. 19(2), pages 1-31, February.
    16. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    18. Florian N. Brünig & Manuel Rammler & Ellen M. Adams & Martina Havenith & Roland R. Netz, 2022. "Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Lucey, Brian & Yahya, Muhammad & Khoja, Layla & Uddin, Gazi Salah & Ahmed, Ali, 2024. "Interconnectedness and risk profile of hydrogen against major asset classes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63832-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.