IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63397-z.html
   My bibliography  Save this article

Intrinsic metal-support interactions break the activity-stability dilemma in electrocatalysis

Author

Listed:
  • Lingxi Zhou

    (Tsinghua University)

  • Menghao Yang

    (Tongji University)

  • Yihong Liu

    (Tongji University)

  • Feiyu Kang

    (Tsinghua University
    Tsinghua University)

  • Ruitao Lv

    (Tsinghua University
    Tsinghua University)

Abstract

Electrocatalysis plays a central role in clean energy conversion and sustainable technologies. However, the trade-off between activity and stability of electrocatalysts largely hinders their practical applications, notably in the oxygen evolution reaction for producing hydrogen and solar fuels. Here we report a steam-assisted synthesis armed with machine learning screening of an integrated Ru/TiMnOx electrode, featuring intrinsic metal-support interactions. These atomic-scale interactions with self-healing capabilities radically address the activity-stability dilemma across all pH levels. Consequently, the Ru/TiMnOx electrode demonstrate enhanced mass activities—48.5×, 112.8×, and 74.6× higher than benchmark RuO2 under acidic, neutral, and alkaline conditions, respectively. Notably, it achieves stable operation for up to 3,000 h, representing a multi-fold stability improvement comparable to other state-of-the-art catalysts. The breakthrough in activity-stability limitations highlights the potential of intrinsic metal-support interactions for enhancing electrocatalysis and heterogeneous catalysis in diverse applications.

Suggested Citation

  • Lingxi Zhou & Menghao Yang & Yihong Liu & Feiyu Kang & Ruitao Lv, 2025. "Intrinsic metal-support interactions break the activity-stability dilemma in electrocatalysis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63397-z
    DOI: 10.1038/s41467-025-63397-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63397-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63397-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63397-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.