IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63345-x.html
   My bibliography  Save this article

Understanding efficiency losses from radiative and nonradiative recombination in Cu2ZnSn(S,Se)4 solar cells

Author

Listed:
  • Shreyash S. Hadke

    (Northwestern University)

  • Zhenghua Su

    (Shenzhen University)

  • Qingbo Meng

    (Chinese Academy of Sciences (CAS)
    University of Chinese Academy of Sciences)

  • Hao Xin

    (Nanjing University of Posts & Telecommunications (NJUPT))

  • Sixin Wu

    (Henan University
    Henan University)

  • Guangxing Liang

    (Shenzhen University)

  • Zhipeng Shao

    (Shandong Energy Institute)

  • Lydia H. Wong

    (Nanyang Technological University)

Abstract

The photovoltaic performance of Cu2ZnSn(S,Se)4 is limited by open-circuit voltage losses (ΔVOC) in the radiative (ΔVOCRad) and non-radiative (ΔVOCNrad) limits, due to sub-bandgap absorption and deep defects, respectively. Recently, several devices with power conversion efficiencies approaching 15% have been reported, prompting renewed interest in the possibility that the key performance-limiting factors have been addressed. In this work, we analyze the sources of ΔVOC in these devices and offer directions for future research. We find that ΔVOCRad, arising from bandgap fluctuations and Urbach tails, has been significantly suppressed, with values comparable to those of commercial Cu(In,Ga)(S,Se)2 solar cells. However, the recombination parameter J0, which is more directly related to ΔVOCNrad, shows only modest improvement and must be reduced by four to six orders of magnitude to compete with Cu(In,Ga)(S,Se)2. To approach the theoretical efficiency limit, future work should focus on more directly addressing deep defects and ΔVOCNrad.

Suggested Citation

  • Shreyash S. Hadke & Zhenghua Su & Qingbo Meng & Hao Xin & Sixin Wu & Guangxing Liang & Zhipeng Shao & Lydia H. Wong, 2025. "Understanding efficiency losses from radiative and nonradiative recombination in Cu2ZnSn(S,Se)4 solar cells," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63345-x
    DOI: 10.1038/s41467-025-63345-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63345-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63345-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao Xu & Jiazheng Zhou & Kang Yin & Jinlin Wang & Licheng Lou & Menghan Jiao & Bowen Zhang & Dongmei Li & Jiangjian Shi & Huijue Wu & Yanhong Luo & Qingbo Meng, 2023. "Controlling Selenization Equilibrium Enables High-Quality Kesterite Absorbers for Efficient Solar Cells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Varun Sivaram & Shayle Kann, 2016. "Solar power needs a more ambitious cost target," Nature Energy, Nature, vol. 1(4), pages 1-3, April.
    3. Jianjun Li & Jialiang Huang & Fajun Ma & Heng Sun & Jialin Cong & Karen Privat & Richard F. Webster & Soshan Cheong & Yin Yao & Robert Lee Chin & Xiaojie Yuan & Mingrui He & Kaiwen Sun & Hui Li & Yaoh, 2022. "Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells," Nature Energy, Nature, vol. 7(8), pages 754-764, August.
    4. Chang Yan & Jialiang Huang & Kaiwen Sun & Steve Johnston & Yuanfang Zhang & Heng Sun & Aobo Pu & Mingrui He & Fangyang Liu & Katja Eder & Limei Yang & Julie M. Cairney & N. J. Ekins-Daukes & Ziv Hamei, 2018. "Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment," Nature Energy, Nature, vol. 3(9), pages 764-772, September.
    5. Jiangjian Shi & Jinlin Wang & Fanqi Meng & Jiazheng Zhou & Xiao Xu & Kang Yin & Licheng Lou & Menghan Jiao & Bowen Zhang & Huijue Wu & Yanhong Luo & Dongmei Li & Qingbo Meng, 2024. "Multinary alloying for facilitated cation exchange and suppressed defect formation in kesterite solar cells with above 14% certified efficiency," Nature Energy, Nature, vol. 9(9), pages 1095-1104, September.
    6. Martin Stolterfoht & Christian M. Wolff & José A. Márquez & Shanshan Zhang & Charles J. Hages & Daniel Rothhardt & Steve Albrecht & Paul L. Burn & Paul Meredith & Thomas Unold & Dieter Neher, 2018. "Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells," Nature Energy, Nature, vol. 3(10), pages 847-854, October.
    7. Yuancai Gong & Qiang Zhu & Bingyan Li & Shanshan Wang & Biwen Duan & Licheng Lou & Chunxu Xiang & Erin Jedlicka & Rajiv Giridharagopal & Yage Zhou & Qi Dai & Weibo Yan & Shiyou Chen & Qingbo Meng & Ha, 2022. "Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells," Nature Energy, Nature, vol. 7(10), pages 966-977, October.
    8. Jiazheng Zhou & Xiao Xu & Huijue Wu & Jinlin Wang & Licheng Lou & Kang Yin & Yuancai Gong & Jiangjian Shi & Yanhong Luo & Dongmei Li & Hao Xin & Qingbo Meng, 2023. "Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency," Nature Energy, Nature, vol. 8(5), pages 526-535, May.
    9. Quinn Burlingame & Melissa Ball & Yueh-Lin Loo, 2020. "It’s time to focus on organic solar cell stability," Nature Energy, Nature, vol. 5(12), pages 947-949, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinlin Wang & Jiangjian Shi & Kang Yin & Fanqi Meng & Shanshan Wang & Licheng Lou & Jiazheng Zhou & Xiao Xu & Huijue Wu & Yanhong Luo & Dongmei Li & Shiyou Chen & Qingbo Meng, 2024. "Pd(II)/Pd(IV) redox shuttle to suppress vacancy defects at grain boundaries for efficient kesterite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Deng-Bing Li & Sandip S. Bista & Rasha A. Awni & Sabin Neupane & Abasi Abudulimu & Xiaoming Wang & Kamala K. Subedi & Manoj K. Jamarkattel & Adam B. Phillips & Michael J. Heben & Jonathan D. Poplawsky, 2022. "20%-efficient polycrystalline Cd(Se,Te) thin-film solar cells with compositional gradient near the front junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    5. Walsh, Michael J. & Gerber Van Doren, Léda & Shete, Nilam & Prakash, Akshay & Salim, Usama, 2018. "Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions," Applied Energy, Elsevier, vol. 210(C), pages 591-603.
    6. Sri Harish Kumar Paleti & Sandra Hultmark & Jianhua Han & Yuanfan Wen & Han Xu & Si Chen & Emmy Järsvall & Ishita Jalan & Diego Rosas Villalva & Anirudh Sharma & Jafar. I. Khan & Ellen Moons & Ruipeng, 2023. "Hexanary blends: a strategy towards thermally stable organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Mills, Andrew & Wiser, Ryan & Millstein, Dev & Carvallo, Juan Pablo & Gorman, Will & Seel, Joachim & Jeong, Seongeun, 2021. "The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States," Applied Energy, Elsevier, vol. 283(C).
    8. Wei Qin & Wajid Ali & Jianfeng Wang & Yong Liu & Xiaolan Yan & Pengfei Zhang & Zhaochi Feng & Hao Tian & Yanfeng Yin & Wenming Tian & Can Li, 2023. "Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.
    11. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Wafaa Saleh & Shekaina Justin & Ghada Alsawah & Tasneem Al Ghamdi & Maha M. A. Lashin, 2021. "Control Strategies for Energy Efficiency at PNU’s Metro System," Energies, MDPI, vol. 14(20), pages 1-13, October.
    13. Yang, Ying & Campana, Pietro Elia & Yan, Jinyue, 2020. "Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Yuxiang Gao & Fenglin Deng & Ri He & Zhicheng Zhong, 2025. "Spontaneous curvature in two-dimensional van der Waals heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    15. Nemet, Gregory F. & O’Shaughnessy, Eric & Wiser, Ryan & Darghouth, Naïm & Barbose, Galen & Gillingham, Ken & Rai, Varun, 2017. "Characteristics of low-priced solar PV systems in the U.S," Applied Energy, Elsevier, vol. 187(C), pages 501-513.
    16. Chong, Shijia & Wu, Jing & Chang, I-Shin, 2024. "Cost accounting and economic competitiveness evaluation of photovoltaic power generation in China —— based on the system levelized cost of electricity," Renewable Energy, Elsevier, vol. 222(C).
    17. Kyle Frohna & Cullen Chosy & Amran Al-Ashouri & Florian Scheler & Yu-Hsien Chiang & Milos Dubajic & Julia E. Parker & Jessica M. Walker & Lea Zimmermann & Thomas A. Selby & Yang Lu & Bart Roose & Stev, 2025. "The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells," Nature Energy, Nature, vol. 10(1), pages 66-76, January.
    18. Stefania Cacovich & Guillaume Vidon & Matteo Degani & Marie Legrand & Laxman Gouda & Jean-Baptiste Puel & Yana Vaynzof & Jean-François Guillemoles & Daniel Ory & Giulia Grancini, 2022. "Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Utsav Bhattarai & Rohini Devkota & Tek Maraseni & Laxmi Devkota & Suresh Marahatta, 2023. "Attaining multiple sustainable development goals through storage hydropower development amidst community vulnerabilities," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(5), pages 3913-3929, October.
    20. Stiewe, Clemens & Xu, Alice Lixuan & Eicke, Anselm & Hirth, Lion, 2025. "Cross-border cannibalization: Spillover effects of wind and solar energy on interconnected European electricity markets," Energy Economics, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63345-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.