IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63314-4.html
   My bibliography  Save this article

Dopaminergic signaling regulates microglial surveillance and adolescent plasticity in the mouse frontal cortex

Author

Listed:
  • Rianne Stowell

    (University of Rochester Medical Center)

  • Kuan Hong Wang

    (University of Rochester Medical Center)

Abstract

Adolescence is a sensitive period for frontal cortical development and cognitive maturation, marked by heightened structural plasticity in the dopaminergic (DA) mesofrontal circuit. However, the cellular and molecular mechanisms underlying this plasticity remain unclear. Here, we show that microglia, the brain’s innate immune cells, are highly responsive to mesofrontal DA signaling during adolescence. Longitudinal in vivo two-photon imaging in mice reveals that frontal cortical microglia increase their surveillance of the parenchyma and DA axonal boutons following rewarding experiences or optogenetic stimulation of DA axons. Microglial contacts with DA axons consistently precede bouton formation, and microglia-bouton interactions are regulated by D1- and D2-type DA receptors in adolescence and adulthood. Furthermore, microglial purinergic receptor P2RY12 signaling is necessary for enhanced microglial surveillance and DA bouton formation during adolescence. These results uncover bidirectional interactions between DA signaling and microglial surveillance that drive adolescent frontal plasticity and identify potential targets for restoring plasticity in adulthood.

Suggested Citation

  • Rianne Stowell & Kuan Hong Wang, 2025. "Dopaminergic signaling regulates microglial surveillance and adolescent plasticity in the mouse frontal cortex," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63314-4
    DOI: 10.1038/s41467-025-63314-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63314-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63314-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Akiko Miyamoto & Hiroaki Wake & Ayako Wendy Ishikawa & Kei Eto & Keisuke Shibata & Hideji Murakoshi & Schuichi Koizumi & Andrew J. Moorhouse & Yumiko Yoshimura & Junichi Nabekura, 2016. "Microglia contact induces synapse formation in developing somatosensory cortex," Nature Communications, Nature, vol. 7(1), pages 1-12, November.
    2. G. O. Sipe & R. L. Lowery, & M-È Tremblay & E. A. Kelly & C. E. Lamantia & A. K. Majewska, 2016. "Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex," Nature Communications, Nature, vol. 7(1), pages 1-15, April.
    3. Ronald E. Dahl & Nicholas B. Allen & Linda Wilbrecht & Ahna Ballonoff Suleiman, 2018. "Importance of investing in adolescence from a developmental science perspective," Nature, Nature, vol. 554(7693), pages 441-450, February.
    4. Ana Badimon & Hayley J. Strasburger & Pinar Ayata & Xinhong Chen & Aditya Nair & Ako Ikegami & Philip Hwang & Andrew T. Chan & Steven M. Graves & Joseph O. Uweru & Carola Ledderose & Munir Gunes Kutlu, 2020. "Negative feedback control of neuronal activity by microglia," Nature, Nature, vol. 586(7829), pages 417-423, October.
    5. Zizhen Yao & Cindy T. J. Velthoven & Michael Kunst & Meng Zhang & Delissa McMillen & Changkyu Lee & Won Jung & Jeff Goldy & Aliya Abdelhak & Matthew Aitken & Katherine Baker & Pamela Baker & Eliza Bar, 2023. "A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain," Nature, Nature, vol. 624(7991), pages 317-332, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Péter Berki & Csaba Cserép & Zsuzsanna Környei & Balázs Pósfai & Eszter Szabadits & Andor Domonkos & Anna Kellermayer & Miklós Nyerges & Xiaofei Wei & Istvan Mody & Araki Kunihiko & Heinz Beck & He Ka, 2024. "Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    2. Wanjie Wu & Yingzhu He & Yujun Chen & Yiming Fu & Sicong He & Kai Liu & Jianan Y. Qu, 2024. "In vivo imaging in mouse spinal cord reveals that microglia prevent degeneration of injured axons," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Danyang Chen & Qianqian Lou & Xiang-Jie Song & Fang Kang & An Liu & Changjian Zheng & Yanhua Li & Di Wang & Sen Qun & Zhi Zhang & Peng Cao & Yan Jin, 2024. "Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Katia Monsorno & Kyllian Ginggen & Andranik Ivanov & An Buckinx & Arnaud L. Lalive & Anna Tchenio & Sam Benson & Marc Vendrell & Angelo D’Alessandro & Dieter Beule & Luc Pellerin & Manuel Mameli & Ros, 2023. "Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. I. Hristovska & M. Robert & K. Combet & J. Honnorat & J-C Comte & O. Pascual, 2022. "Sleep decreases neuronal activity control of microglial dynamics in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Sonia Bhalotra & N.Meltem Daysal & Mircea Trandafir, 2025. "Antidepressant Treatment in Childhood," CEBI working paper series 25-09, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    7. Anika Frühauf & Martin Kopp & Martin Niedermeier, 2022. "Risk Factors for Accidents and Close Calls in Junior Freeriders, Adolescent Alpine Skiers and Adult Freeriders—A Comparison," IJERPH, MDPI, vol. 19(22), pages 1-12, November.
    8. Zhongxiao Fu & Mallikarjunarao Ganesana & Philip Hwang & Xiao Tan & Melissa Marie Kinkaid & Yu-Yo Sun & Emily Bian & Aden Weybright & Hong-Ru Chen & Katia Sol-Church & Ukpong B. Eyo & Clare Pridans & , 2025. "Microglia modulate the cerebrovascular reactivity through ectonucleotidase CD39," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    9. Lambon-Quayefio, Monica & Peterman, Amber & Handa, Sudhanshu & Molotsky, Adria & Otchere, Frank & Mvula, Peter & Tsoka, Maxton & de Hoop, Jacobus & Angeles, Gustavo & Kilburn, Kelly & Milazzo, Annamar, 2024. "Unconditional cash transfers and safe transitions to adulthood in Malawi," World Development, Elsevier, vol. 175(C).
    10. Joseph Cichon & Thomas T. Joseph & Xinguo Lu & Andrzej Z. Wasilczuk & Max B. Kelz & Steven J. Mennerick & Charles F. Zorumski & Peter Nagele, 2025. "Nitrous oxide activates layer 5 prefrontal neurons via SK2 channel inhibition for antidepressant effect," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    11. Cattan, Sarah & Lereya, Suzet Tanya & Yoon, Yeosun & Gilbert, Ruth & Deighton, Jessica, 2023. "The impact of area level mental health interventions on outcomes for secondary school pupils: Evidence from the HeadStart programme in England," Economics of Education Review, Elsevier, vol. 96(C).
    12. Alex J. Lee & Alma Dubuc & Michael Kunst & Shenqin Yao & Nicholas Lusk & Lydia Ng & Hongkui Zeng & Bosiljka Tasic & Reza Abbasi-Asl, 2025. "Data-driven fine-grained region discovery in the mouse brain with transformers," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    13. George Sideris-Lampretsas & Silvia Oggero & Lynda Zeboudj & Rita Silva & Archana Bajpai & Gopuraja Dharmalingam & David A. Collier & Marzia Malcangio, 2023. "Galectin-3 activates spinal microglia to induce inflammatory nociception in wild type but not in mice modelling Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Allen Yen & Simona Sarafinovska & Xuhua Chen & Dominic D. Skinner & Fatjon Leti & MariaLynn Crosby & Jessica Hoisington-Lopez & Yizhe Wu & Jiayang Chen & Zipeng A. Li & Kevin K. Noguchi & Robi D. Mitr, 2024. "MYT1L deficiency impairs excitatory neuron trajectory during cortical development," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Chen-Rui Xia & Zhi-Jie Cao & Ge Gao, 2025. "DECIPHER for learning disentangled cellular embeddings in large-scale heterogeneous spatial omics data," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Chen, Jiwei & Zhang, Zongli, 2024. "Family poverty and adolescents’ cognitive and noncognitive outcomes: Evidence from China," Economics & Human Biology, Elsevier, vol. 54(C).
    17. Grace Chang, 2025. "Types of Adolescent Screen Use and Positive Wellbeing: Gender and Parental Education Influences," Journal of Happiness Studies, Springer, vol. 26(4), pages 1-20, April.
    18. Min Yi Feng & Wuxinhao Cao & Nareh Tahmasian & Bharti Kukreja & Gen Li & Bianca Rusu & Ji-Young Youn & Brian T. Kalish, 2025. "Molecular cartography of the human down syndrome and trisomic mouse brain," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    19. Erin E. Aisenberg & Thomas L. Li & Hongli Wang & Atehsa A. Sahagun & Emilie M. Tu & Helen S. Bateup, 2025. "Gastrin-releasing peptide signaling in the nucleus accumbens medial shell regulates neuronal excitability and motivation," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    20. Arlene R. Lundquist & Hannah Johnson & Annalisa Fusco, 2024. "The Covid Generation: How a Pandemic Changed the Way College Students Relate to Themselves and Others," RAIS Conference Proceedings 2022-2025 0456, Research Association for Interdisciplinary Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63314-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.