IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63258-9.html
   My bibliography  Save this article

Topotaxially grown composite cathodes for cobalt-free high-energy long-life Li-ion batteries

Author

Listed:
  • Junyi Yao

    (Soochow University, College of Energy, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies
    Virginia Tech University, Department of Chemistry)

  • Sizhan Liu

    (Brookhaven National Laboratory, Interdisciplinary Science Department)

  • Wujun Zhang

    (Chinese Academy of Sciences, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO))

  • Lijun Wu

    (Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division)

  • Zhenjie Zhang

    (Nanjing University, Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures)

  • Ping He

    (Nanjing University, Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures)

  • Yanbin Shen

    (Chinese Academy of Sciences, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO))

  • Liwei Chen

    (Chinese Academy of Sciences, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)
    Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering)

  • Mingyuan Ge

    (Brookhaven National Laboratory, National Synchrotron Light Source II)

  • Lu Ma

    (Brookhaven National Laboratory, National Synchrotron Light Source II)

  • Xiaotian Zhu

    (Soochow University, College of Energy, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies)

  • Kaihua Xu

    (GEM Co., Ltd.)

  • Kun Zhang

    (GEM Co., Ltd.)

  • Feng Wang

    (Argonne National Laboratory, Applied Materials Division)

  • Jianqing Zhao

    (Soochow University, College of Energy, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies
    Jiangsu Zoolnasm Technology Co., LTD)

  • Jianming Bai

    (Brookhaven National Laboratory, National Synchrotron Light Source II)

Abstract

The vehicle industry’s increasing demand for electrification necessitates the removal of expensive and rare cobalt from current high-energy batteries. However, eliminating cobalt poses challenges due to its vital role in maintaining the layered structural ordering and cycling stability of commonly used Li(NiMnCo)O2 cathodes. As an alternative to conventional layered oxide designs, we report a lithium nickelate cathode with a composite structure comprising major stoichiometric layered and minor rocksalt phases within the same oxygen lattice. This material outperforms conventional designs by maintaining stable battery operation at voltages up to 4.8 V vs. Li|Li+, with 88% capacity retention after 1000 cycles at 2C. The topotaxial-growth-enabled interlock between the two components mitigates chemo-mechanical degradation, offering a promising pathway to cobalt-free cathodes. Additionally, we reveal a miscibility gap in the Li-Ni-O system that enables kinetic adjustment of composition and structure during sintering, thereby tuning the functionality of high-energy cathodes.

Suggested Citation

  • Junyi Yao & Sizhan Liu & Wujun Zhang & Lijun Wu & Zhenjie Zhang & Ping He & Yanbin Shen & Liwei Chen & Mingyuan Ge & Lu Ma & Xiaotian Zhu & Kaihua Xu & Kun Zhang & Feng Wang & Jianqing Zhao & Jianming, 2025. "Topotaxially grown composite cathodes for cobalt-free high-energy long-life Li-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63258-9
    DOI: 10.1038/s41467-025-63258-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63258-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63258-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    2. Shuo Sun & Zhen Han & Wei Liu & Qiuying Xia & Liang Xue & Xincheng Lei & Teng Zhai & Dong Su & Hui Xia, 2023. "Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Ning Li & Meiling Sun & Wang Hay Kan & Zengqing Zhuo & Sooyeon Hwang & Sara E. Renfrew & Maxim Avdeev & Ashfia Huq & Bryan D. McCloskey & Dong Su & Wanli Yang & Wei Tong, 2021. "Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Rui Wang & Xin Chen & Zhongyuan Huang & Jinlong Yang & Fusheng Liu & Mihai Chu & Tongchao Liu & Chaoqi Wang & Weiming Zhu & Shuankui Li & Shunning Li & Jiaxin Zheng & Jie Chen & Lunhua He & Lei Jin & , 2021. "Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Ke Chen & Pallab Barai & Ozgenur Kahvecioglu & Lijun Wu & Krzysztof Z. Pupek & Mingyuan Ge & Lu Ma & Steven N. Ehrlich & Hui Zhong & Yimei Zhu & Venkat Srinivasan & Jianming Bai & Feng Wang, 2024. "Cobalt-free composite-structured cathodes with lithium-stoichiometry control for sustainable lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Wangda Li & Evan M. Erickson & Arumugam Manthiram, 2020. "High-nickel layered oxide cathodes for lithium-based automotive batteries," Nature Energy, Nature, vol. 5(1), pages 26-34, January.
    7. Rui Zhang & Chunyang Wang & Peichao Zou & Ruoqian Lin & Lu Ma & Liang Yin & Tianyi Li & Wenqian Xu & Hao Jia & Qiuyan Li & Sami Sainio & Kim Kisslinger & Stephen E. Trask & Steven N. Ehrlich & Yang Ya, 2022. "Compositionally complex doping for zero-strain zero-cobalt layered cathodes," Nature, Nature, vol. 610(7930), pages 67-73, October.
    8. Liguang Wang & Tongchao Liu & Tianpin Wu & Jun Lu, 2022. "Strain-retardant coherent perovskite phase stabilized Ni-rich cathode," Nature, Nature, vol. 611(7934), pages 61-67, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geon-Tae Park & Nam-Yung Park & Ji-Hyun Ryu & Sung-June Sohn & Tae-Yeon Yu & Myoung-Chan Kim & Sourav Baiju & Payam Kaghazchi & Chong S. Yoon & Yang-Kook Sun, 2025. "Zero-strain Mn-rich layered cathode for sustainable and high-energy next-generation batteries," Nature Energy, Nature, vol. 10(10), pages 1215-1225, October.
    2. Hang Li & Hao Liu & Shunrui Luo & Jordi Arbiol & Emmanuelle Suard & Thomas Bergfeldt & Alexander Missyul & Volodymyr Baran & Stefan Mangold & Yongchao Zhang & Weibo Hua & Michael Knapp & Helmut Ehrenb, 2025. "Tuning Li occupancy and local structures for advanced Co-free Ni-rich positive electrodes," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Held, Marcel & Tuchschmid, Martin & Zennegg, Markus & Figi, Renato & Schreiner, Claudia & Mellert, Lars Derek & Welte, Urs & Kompatscher, Michael & Hermann, Michael & Nachef, Léa, 2022. "Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Lei Yu & Jing Wang & Tao Zhou & Weiyuan Huang & Tianyi Li & Lu Ma & Xianghui Xiao & Seoung-Bum Son & Steven N. Ehrlich & Jianguo Wen & Khalil Amine & Tongchao Liu, 2025. "Unraveling the origin of air-stability in single-crystalline layered oxide positive electrode materials," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Lei Yu & Alvin Dai & Tao Zhou & Weiyuan Huang & Jing Wang & Tianyi Li & Xinyou He & Lu Ma & Xianghui Xiao & Mingyuan Ge & Rachid Amine & Steven N. Ehrlich & Xing Ou & Jianguo Wen & Tongchao Liu & Khal, 2025. "Parasitic structure defect blights sustainability of cobalt-free single crystalline cathodes," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Weihao Zeng & Fanjie Xia & Juan Wang & Jinlong Yang & Haoyang Peng & Wei Shu & Quan Li & Hong Wang & Guan Wang & Shichun Mu & Jinsong Wu, 2024. "Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Zhongsheng Dai & Zhujie Li & Renjie Chen & Feng Wu & Li Li, 2023. "Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    13. Danfeng Zhang & Ming Liu & Jiabin Ma & Ke Yang & Zhen Chen & Kaikai Li & Chen Zhang & Yinping Wei & Min Zhou & Peng Wang & Yuanbiao He & Wei Lv & Quan-Hong Yang & Feiyu Kang & Yan-Bing He, 2022. "Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Haochen Gong & Yu Cao & Baoshan Zhang & Jinsong Zhang & Yiming Zhang & Huili Wang & Shaojie Zhang & Xiaoyi Wang & Yue Mao & Shuo Liu & Chengyu Han & Qianxin Xiang & Chaoyi Zhou & Jie Sun, 2024. "Noninvasive rejuvenation strategy of nickel-rich layered positive electrode for Li-ion battery through magneto-electrochemical synergistic activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Tonghuan Yang & Kun Zhang & Yuxuan Zuo & Jin Song & Yali Yang & Chuan Gao & Tao Chen & Hangchao Wang & Wukun Xiao & Zewen Jiang & Dingguo Xia, 2024. "Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries," Nature Sustainability, Nature, vol. 7(9), pages 1204-1214, September.
    16. Dae-Seon Hong & Yeon-Ji Choi & Chang-Su Jin & Kyoung-Hee Shin & Woo-Jin Song & Sun-Hwa Yeon, 2023. "Enhanced Cycle Performance of NiCo 2 O 4 /CNTs Composites in Lithium-Air Batteries," Energies, MDPI, vol. 17(1), pages 1-14, December.
    17. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    18. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Green, William H., 2020. "Transition to electric vehicles in China: Implications for private motorization rate and battery market," Energy Policy, Elsevier, vol. 144(C).
    19. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    20. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63258-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.