IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62897-2.html
   My bibliography  Save this article

Floquet control of interactions and edge states in a programmable quantum simulator

Author

Listed:
  • Or Katz

    (Duke University
    Cornell University)

  • Lei Feng

    (Duke University
    Fudan University)

  • Diego Porras

    (Institute of Fundamental Physics IFF-CSIC)

  • Christopher Monroe

    (Duke University)

Abstract

Quantum simulators based on trapped ions enable the study of spin systems and models with rich dynamical phenomena. The Su-Schrieffer-Heeger (SSH) model for fermions in one dimension is a canonical example that can support a topological insulator phase when couplings between sites are dimerized, featuring long-lived edge states. Here, we experimentally implement a spin-based variant of the SSH model using one-dimensional trapped-ion chains with tunable interaction range, realized in crystals containing up to 22 interacting spins. Using an array of individually focused laser beams, we apply site-specific, time-dependent Floquet fields to induce controlled bond dimerization. Under conditions that preserve inversion symmetry, we observe edge-state dynamics consistent with SSH-like behavior. We study the propagation and localization of spin excitations, as well as the evolution of highly excited configurations across different interaction regimes. These results demonstrate how precision Floquet engineering enables the exploration of complex spin models and dynamics, laying the groundwork for future preparation and characterization of topological and exotic phases of matter.

Suggested Citation

  • Or Katz & Lei Feng & Diego Porras & Christopher Monroe, 2025. "Floquet control of interactions and edge states in a programmable quantum simulator," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62897-2
    DOI: 10.1038/s41467-025-62897-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62897-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62897-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62897-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.