IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62897-2.html
   My bibliography  Save this article

Floquet control of interactions and edge states in a programmable quantum simulator

Author

Listed:
  • Or Katz

    (Duke University
    Cornell University)

  • Lei Feng

    (Duke University
    Fudan University)

  • Diego Porras

    (Institute of Fundamental Physics IFF-CSIC)

  • Christopher Monroe

    (Duke University)

Abstract

Quantum simulators based on trapped ions enable the study of spin systems and models with rich dynamical phenomena. The Su-Schrieffer-Heeger (SSH) model for fermions in one dimension is a canonical example that can support a topological insulator phase when couplings between sites are dimerized, featuring long-lived edge states. Here, we experimentally implement a spin-based variant of the SSH model using one-dimensional trapped-ion chains with tunable interaction range, realized in crystals containing up to 22 interacting spins. Using an array of individually focused laser beams, we apply site-specific, time-dependent Floquet fields to induce controlled bond dimerization. Under conditions that preserve inversion symmetry, we observe edge-state dynamics consistent with SSH-like behavior. We study the propagation and localization of spin excitations, as well as the evolution of highly excited configurations across different interaction regimes. These results demonstrate how precision Floquet engineering enables the exploration of complex spin models and dynamics, laying the groundwork for future preparation and characterization of topological and exotic phases of matter.

Suggested Citation

  • Or Katz & Lei Feng & Diego Porras & Christopher Monroe, 2025. "Floquet control of interactions and edge states in a programmable quantum simulator," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62897-2
    DOI: 10.1038/s41467-025-62897-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62897-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62897-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lei Feng & Or Katz & Casey Haack & Mohammad Maghrebi & Alexey V. Gorshkov & Zhexuan Gong & Marko Cetina & Christopher Monroe, 2023. "Continuous symmetry breaking in a trapped-ion spin chain," Nature, Nature, vol. 623(7988), pages 713-717, November.
    2. Laird Egan & Dripto M. Debroy & Crystal Noel & Andrew Risinger & Daiwei Zhu & Debopriyo Biswas & Michael Newman & Muyuan Li & Kenneth R. Brown & Marko Cetina & Christopher Monroe, 2021. "Fault-tolerant control of an error-corrected qubit," Nature, Nature, vol. 598(7880), pages 281-286, October.
    3. Joel E. Moore, 2010. "The birth of topological insulators," Nature, Nature, vol. 464(7286), pages 194-198, March.
    4. J. Zhang & P. W. Hess & A. Kyprianidis & P. Becker & A. Lee & J. Smith & G. Pagano & I.-D. Potirniche & A. C. Potter & A. Vishwanath & N. Y. Yao & C. Monroe, 2017. "Observation of a discrete time crystal," Nature, Nature, vol. 543(7644), pages 217-220, March.
    5. Soonwon Choi & Joonhee Choi & Renate Landig & Georg Kucsko & Hengyun Zhou & Junichi Isoya & Fedor Jelezko & Shinobu Onoda & Hitoshi Sumiya & Vedika Khemani & Curt von Keyserlingk & Norman Y. Yao & Eug, 2017. "Observation of discrete time-crystalline order in a disordered dipolar many-body system," Nature, Nature, vol. 543(7644), pages 221-225, March.
    6. Gregor Jotzu & Michael Messer & Rémi Desbuquois & Martin Lebrat & Thomas Uehlinger & Daniel Greif & Tilman Esslinger, 2014. "Experimental realization of the topological Haldane model with ultracold fermions," Nature, Nature, vol. 515(7526), pages 237-240, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arinjoy De & Patrick Cook & Mostafa Ali & Kate Collins & William Morong & Daniel Paz & Paraj Titum & Guido Pagano & Alexey V. Gorshkov & Mohammad Maghrebi & Christopher Monroe, 2025. "Non-equilibrium critical scaling and universality in a quantum simulator," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Reinhold Kleiner & Xianjing Zhou & Eric Dorsch & Xufeng Zhang & Dieter Koelle & Dafei Jin, 2021. "Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Egor I. Kiselev & Mark S. Rudner & Netanel H. Lindner, 2024. "Inducing exceptional points, enhancing plasmon quality and creating correlated plasmon states with modulated Floquet parametric driving," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. L. J. Stanley & Ping V. Lin & J. Jaroszyński & Dragana Popović, 2023. "Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Weixuan Zhang & Wenhui Cao & Long Qian & Hao Yuan & Xiangdong Zhang, 2025. "Topolectrical space-time circuits," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    7. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Alex Greilich & Nataliia E. Kopteva & Vladimir L. Korenev & Philipp A. Haude & Manfred Bayer, 2025. "Exploring nonlinear dynamics in periodically driven time crystal from synchronization to chaotic motion," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    9. Yuechun Jiao & Weilun Jiang & Yu Zhang & Jingxu Bai & Yunhui He & Heng Shen & Jianming Zhao & Suotang Jia, 2025. "Observation of multiple time crystals in a driven-dissipative system with Rydberg gas," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    10. Bang Liu & Li-Hua Zhang & Yu Ma & Qi-Feng Wang & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Guang-Can Guo & Dong-Sheng Ding & Bao-Sen Shi, 2025. "Bifurcation of time crystals in driven and dissipative Rydberg atomic gas," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    11. Liang Xiang & Wenjie Jiang & Zehang Bao & Zixuan Song & Shibo Xu & Ke Wang & Jiachen Chen & Feitong Jin & Xuhao Zhu & Zitian Zhu & Fanhao Shen & Ning Wang & Chuanyu Zhang & Yaozu Wu & Yiren Zou & Jiar, 2024. "Long-lived topological time-crystalline order on a quantum processor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Bang Liu & Li-Hua Zhang & Qi-Feng Wang & Yu Ma & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Bao-Sen Shi & Dong-Sheng Ding, 2024. "Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Zehang Bao & Shibo Xu & Zixuan Song & Ke Wang & Liang Xiang & Zitian Zhu & Jiachen Chen & Feitong Jin & Xuhao Zhu & Yu Gao & Yaozu Wu & Chuanyu Zhang & Ning Wang & Yiren Zou & Ziqi Tan & Aosai Zhang &, 2024. "Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. S. Autti & P. J. Heikkinen & J. Nissinen & J. T. Mäkinen & G. E. Volovik & V. V. Zavyalov & V. B. Eltsov, 2022. "Nonlinear two-level dynamics of quantum time crystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Chang-Kang Hu & Guixu Xie & Kasper Poulsen & Yuxuan Zhou & Ji Chu & Chilong Liu & Ruiyang Zhou & Haolan Yuan & Yuecheng Shen & Song Liu & Nikolaj T. Zinner & Dian Tan & Alan C. Santos & Dapeng Yu, 2025. "Digital simulation of zero-temperature spontaneous symmetry breaking in a superconducting lattice processor," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    16. Yuze Hu & Mingyu Tong & Tian Jiang & Jian-Hua Jiang & Hongsheng Chen & Yihao Yang, 2024. "Observation of two-dimensional time-reversal broken non-Abelian topological states," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Wei Chen & An-Zhuo Yu & Zhou Zhou & Ling-Ling Ma & Ze-Yu Wang & Jia-Chen Yang & Cheng-Wei Qiu & Yan-Qing Lu, 2025. "Tailoring spatiotemporal wavepackets via two-dimensional space-time duality," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Yijing Liu & Christopher Yang & Gabriel Gaertner & John Huckabee & Alexey V. Suslov & Gil Refael & Frederik Nathan & Cyprian Lewandowski & Luis E. F. Foa Torres & Iliya Esin & Paola Barbara & Nikolai , 2025. "Signatures of Floquet electronic steady states in graphene under continuous-wave mid-infrared irradiation," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    19. Neereja Sundaresan & Theodore J. Yoder & Youngseok Kim & Muyuan Li & Edward H. Chen & Grace Harper & Ted Thorbeck & Andrew W. Cross & Antonio D. Córcoles & Maika Takita, 2023. "Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62897-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.