IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30783-w.html
   My bibliography  Save this article

Nonlinear two-level dynamics of quantum time crystals

Author

Listed:
  • S. Autti

    (Aalto University
    Lancaster University)

  • P. J. Heikkinen

    (Aalto University
    Royal Holloway University of London)

  • J. Nissinen

    (Aalto University)

  • J. T. Mäkinen

    (Aalto University)

  • G. E. Volovik

    (Aalto University
    L.D. Landau Institute for Theoretical Physics)

  • V. V. Zavyalov

    (Aalto University
    Lancaster University)

  • V. B. Eltsov

    (Aalto University)

Abstract

A time crystal is a macroscopic quantum system in periodic motion in its ground state. In our experiments, two coupled time crystals consisting of spin-wave quasiparticles (magnons) form a macroscopic two-level system. The two levels evolve in time as determined intrinsically by a nonlinear feedback, allowing us to construct spontaneous two-level dynamics. In the course of a level crossing, magnons move from the ground level to the excited level driven by the Landau-Zener effect, combined with Rabi population oscillations. We demonstrate that magnon time crystals allow access to every aspect and detail of quantum-coherent interactions in a single run of the experiment. Our work opens an outlook for the detection of surface-bound Majorana fermions in the underlying superfluid system, and invites technological exploitation of coherent magnon phenomena – potentially even at room temperature.

Suggested Citation

  • S. Autti & P. J. Heikkinen & J. Nissinen & J. T. Mäkinen & G. E. Volovik & V. V. Zavyalov & V. B. Eltsov, 2022. "Nonlinear two-level dynamics of quantum time crystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30783-w
    DOI: 10.1038/s41467-022-30783-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30783-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30783-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. V. Zavjalov & S. Autti & V. B. Eltsov & P. J. Heikkinen & G. E. Volovik, 2016. "Light Higgs channel of the resonant decay of magnon condensate in superfluid 3He-B," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    2. Xiao Mi & Matteo Ippoliti & Chris Quintana & Ami Greene & Zijun Chen & Jonathan Gross & Frank Arute & Kunal Arya & Juan Atalaya & Ryan Babbush & Joseph C. Bardin & Joao Basso & Andreas Bengtsson & Ale, 2022. "Time-crystalline eigenstate order on a quantum processor," Nature, Nature, vol. 601(7894), pages 531-536, January.
    3. J. Zhang & P. W. Hess & A. Kyprianidis & P. Becker & A. Lee & J. Smith & G. Pagano & I.-D. Potirniche & A. C. Potter & A. Vishwanath & N. Y. Yao & C. Monroe, 2017. "Observation of a discrete time crystal," Nature, Nature, vol. 543(7644), pages 217-220, March.
    4. P. J. Heikkinen & A. Casey & L. V. Levitin & X. Rojas & A. Vorontsov & P. Sharma & N. Zhelev & J. M. Parpia & J. Saunders, 2021. "Fragility of surface states in topological superfluid 3He," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. S. Autti & S. L. Ahlstrom & R. P. Haley & A. Jennings & G. R. Pickett & M. Poole & R. Schanen & A. A. Soldatov & V. Tsepelin & J. Vonka & T. Wilcox & A. J. Woods & D. E. Zmeev, 2020. "Fundamental dissipation due to bound fermions in the zero-temperature limit," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Soonwon Choi & Joonhee Choi & Renate Landig & Georg Kucsko & Hengyun Zhou & Junichi Isoya & Fedor Jelezko & Shinobu Onoda & Hitoshi Sumiya & Vedika Khemani & Curt von Keyserlingk & Norman Y. Yao & Eug, 2017. "Observation of discrete time-crystalline order in a disordered dipolar many-body system," Nature, Nature, vol. 543(7644), pages 221-225, March.
    7. D. Lotnyk & A. Eyal & N. Zhelev & T. S. Abhilash & E. N. Smith & M. Terilli & J. Wilson & E. Mueller & D. Einzel & J. Saunders & J. M. Parpia, 2020. "Thermal transport of helium-3 in a strongly confining channel," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuli Autti & Richard P. Haley & Asher Jennings & George R. Pickett & Malcolm Poole & Roch Schanen & Arkady A. Soldatov & Viktor Tsepelin & Jakub Vonka & Vladislav V. Zavjalov & Dmitry E. Zmeev, 2023. "Transport of bound quasiparticle states in a two-dimensional boundary superfluid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Samuli Autti & Richard P. Haley & Asher Jennings & George R. Pickett & Malcolm Poole & Roch Schanen & Arkady A. Soldatov & Viktor Tsepelin & Jakub Vonka & Vladislav V. Zavjalov & Dmitry E. Zmeev, 2023. "Transport of bound quasiparticle states in a two-dimensional boundary superfluid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Reinhold Kleiner & Xianjing Zhou & Eric Dorsch & Xufeng Zhang & Dieter Koelle & Dafei Jin, 2021. "Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. L. J. Stanley & Ping V. Lin & J. Jaroszyński & Dragana Popović, 2023. "Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Yanwu Gu & Wei-Feng Zhuang & Xudan Chai & Dong E. Liu, 2023. "Benchmarking universal quantum gates via channel spectrum," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. T. Kamppinen & J. Rysti & M.-M. Volard & G. E. Volovik & V. B. Eltsov, 2023. "Topological nodal line in superfluid 3He and the Anderson theorem," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Y. Tian & D. Lotnyk & A. Eyal & K. Zhang & N. Zhelev & T. S. Abhilash & A. Chavez & E. N. Smith & M. Hindmarsh & J. Saunders & E. Mueller & J. M. Parpia, 2023. "Supercooling of the A phase of 3He," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. M. Lucas & A. V. Danilov & L. V. Levitin & A. Jayaraman & A. J. Casey & L. Faoro & A. Ya. Tzalenchuk & S. E. Kubatkin & J. Saunders & S. E. de Graaf, 2023. "Quantum bath suppression in a superconducting circuit by immersion cooling," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. E. J. Wildman & G. B. Lawrence & A. Walsh & K. Morita & S. Simpson & C. Ritter & G. B. G. Stenning & A. M. Arevalo-Lopez & A. C. Mclaughlin, 2023. "Observation of an exotic insulator to insulator transition upon electron doping the Mott insulator CeMnAsO," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30783-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.