IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57743-4.html
   My bibliography  Save this article

Tailoring spatiotemporal wavepackets via two-dimensional space-time duality

Author

Listed:
  • Wei Chen

    (Nanjing University)

  • An-Zhuo Yu

    (Nanjing University)

  • Zhou Zhou

    (National University of Singapore)

  • Ling-Ling Ma

    (Nanjing University)

  • Ze-Yu Wang

    (Nanjing University)

  • Jia-Chen Yang

    (Nanjing University)

  • Cheng-Wei Qiu

    (National University of Singapore)

  • Yan-Qing Lu

    (Nanjing University)

Abstract

Spatiotemporal (ST) beams—ultrafast optical wavepackets with customized spatial and temporal characteristics—present a significant contrast to conventional spatial-structured light and hold the potential to revolutionize our understanding and manipulation of light. However, progress in ST beam research has been constrained by the absence of a universal framework for its analysis and generation. Here, we introduce the concept of ‘two-dimensional space-time duality’, establishing a foundational duality between spatial-structured light and ST beams. We show that breaking the exact balance between paraxial diffraction and narrow-band dispersion is crucial for guiding the dynamics of ST wavepackets. Leveraging this insight, we pioneer a versatile complex-amplitude modulation strategy, enabling the precise crafting of ST beams with an exceptional fidelity exceeding 97%. Furthermore, we uncover a new range of ST wavepackets by harnessing the exact one-to-one relationship between scalar spatial-structured light and ST beams. Our results expand the toolkit for ST beam research and hold promise for applications across a diverse spectrum of wave-based physical systems.

Suggested Citation

  • Wei Chen & An-Zhuo Yu & Zhou Zhou & Ling-Ling Ma & Ze-Yu Wang & Jia-Chen Yang & Cheng-Wei Qiu & Yan-Qing Lu, 2025. "Tailoring spatiotemporal wavepackets via two-dimensional space-time duality," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57743-4
    DOI: 10.1038/s41467-025-57743-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57743-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57743-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Grillo & Amir H. Tavabi & Federico Venturi & Hugo Larocque & Roberto Balboni & Gian Carlo Gazzadi & Stefano Frabboni & Peng-Han Lu & Erfan Mafakheri & Frédéric Bouchard & Rafal E. Dunin-Borko, 2017. "Measuring the orbital angular momentum spectrum of an electron beam," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    2. Wei Chen & Wang Zhang & Yuan Liu & Fan-Chao Meng & John M. Dudley & Yan-Qing Lu, 2022. "Time diffraction-free transverse orbital angular momentum beams," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Joseph M. Lukens & Daniel E. Leaird & Andrew M. Weiner, 2013. "A temporal cloak at telecommunication data rate," Nature, Nature, vol. 498(7453), pages 205-208, June.
    4. Moti Fridman & Alessandro Farsi & Yoshitomo Okawachi & Alexander L. Gaeta, 2012. "Demonstration of temporal cloaking," Nature, Nature, vol. 481(7379), pages 62-65, January.
    5. J. Zhang & P. W. Hess & A. Kyprianidis & P. Becker & A. Lee & J. Smith & G. Pagano & I.-D. Potirniche & A. C. Potter & A. Vishwanath & N. Y. Yao & C. Monroe, 2017. "Observation of a discrete time crystal," Nature, Nature, vol. 543(7644), pages 217-220, March.
    6. Hongliang Zhang & Yeyang Sun & Junyi Huang & Bingjun Wu & Zhaoju Yang & Konstantin Y. Bliokh & Zhichao Ruan, 2023. "Topologically crafted spatiotemporal vortices in acoustics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. J. Verbeeck & H. Tian & P. Schattschneider, 2010. "Production and application of electron vortex beams," Nature, Nature, vol. 467(7313), pages 301-304, September.
    8. H. Esat Kondakci & Ayman F. Abouraddy, 2019. "Optical space-time wave packets having arbitrary group velocities in free space," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Liu & Qian Cao & Nianjia Zhang & Andy Chong & Yangjian Cai & Qiwen Zhan, 2024. "Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Shuai Liu & Hao Ge & Xiang-Yuan Xu & Yuan Sun & Xiao-Ping Liu & Ming-Hui Lu & Yan-Feng Chen, 2025. "Generation of spatiotemporal acoustic vortices with arbitrarily oriented orbital angular momentum," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022. "High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Reinhold Kleiner & Xianjing Zhou & Eric Dorsch & Xufeng Zhang & Dieter Koelle & Dafei Jin, 2021. "Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Qinggang Lin & Fu Feng & Yi Cai & Xiaowei Lu & Xuanke Zeng & Congying Wang & Shixiang Xu & Jingzhen Li & Xiaocong Yuan, 2024. "Direct space–time manipulation mechanism for spatio-temporal coupling of ultrafast light field," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Pengcheng Huo & Wei Chen & Zixuan Zhang & Yanzeng Zhang & Mingze Liu & Peicheng Lin & Hui Zhang & Zhaoxian Chen & Henri Lezec & Wenqi Zhu & Amit Agrawal & Chao Peng & Yanqing Lu & Ting Xu, 2024. "Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Egor I. Kiselev & Mark S. Rudner & Netanel H. Lindner, 2024. "Inducing exceptional points, enhancing plasmon quality and creating correlated plasmon states with modulated Floquet parametric driving," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. L. J. Stanley & Ping V. Lin & J. Jaroszyński & Dragana Popović, 2023. "Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Ahmed H. Dorrah & Noah A. Rubin & Michele Tamagnone & Aun Zaidi & Federico Capasso, 2021. "Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Weixuan Zhang & Wenhui Cao & Long Qian & Hao Yuan & Xiangdong Zhang, 2025. "Topolectrical space-time circuits," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. Wei Chen & Wang Zhang & Yuan Liu & Fan-Chao Meng & John M. Dudley & Yan-Qing Lu, 2022. "Time diffraction-free transverse orbital angular momentum beams," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Yanwu Gu & Wei-Feng Zhuang & Xudan Chai & Dong E. Liu, 2023. "Benchmarking universal quantum gates via channel spectrum," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. R. Huber & F. Kern & D. D. Karnaushenko & E. Eisner & P. Lepucki & A. Thampi & A. Mirhajivarzaneh & C. Becker & T. Kang & S. Baunack & B. Büchner & D. Karnaushenko & O. G. Schmidt & A. Lubk, 2022. "Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Haolin Lin & Yixuan Liao & Guohua Liu & Jianbin Ren & Zhen Li & Zhenqiang Chen & Boris A. Malomed & Shenhe Fu, 2024. "Optical vortex-antivortex crystallization in free space," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Alex Greilich & Nataliia E. Kopteva & Vladimir L. Korenev & Philipp A. Haude & Manfred Bayer, 2025. "Exploring nonlinear dynamics in periodically driven time crystal from synchronization to chaotic motion," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    19. Bang Liu & Li-Hua Zhang & Yu Ma & Qi-Feng Wang & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Guang-Can Guo & Dong-Sheng Ding & Bao-Sen Shi, 2025. "Bifurcation of time crystals in driven and dissipative Rydberg atomic gas," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    20. Liang Xiang & Wenjie Jiang & Zehang Bao & Zixuan Song & Shibo Xu & Ke Wang & Jiachen Chen & Feitong Jin & Xuhao Zhu & Zitian Zhu & Fanhao Shen & Ning Wang & Chuanyu Zhang & Yaozu Wu & Yiren Zou & Jiar, 2024. "Long-lived topological time-crystalline order on a quantum processor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57743-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.