IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28462-x.html
   My bibliography  Save this article

All-optical dissipative discrete time crystals

Author

Listed:
  • Hossein Taheri

    (University of California at Riverside)

  • Andrey B. Matsko

    (California Institute of Technology)

  • Lute Maleki

    (OEwaves Inc.)

  • Krzysztof Sacha

    (Uniwersytet Jagielloński)

Abstract

Time crystals are periodic states exhibiting spontaneous symmetry breaking in either time-independent or periodically-driven quantum many-body systems. Spontaneous modification of discrete time-translation symmetry in periodically-forced physical systems can create a discrete time crystal (DTC) constituting a state of matter possessing properties like temporal rigid long-range order and coherence, which are inherently desirable for quantum computing and information processing. Despite their appeal, experimental demonstrations of DTCs are scarce and significant aspects of their behavior remain unexplored. Here, we report the experimental observation and theoretical investigation of DTCs in a Kerr-nonlinear optical microcavity. Empowered by the self-injection locking of two independent lasers with arbitrarily large frequency separation simultaneously to two same-family cavity modes and a dissipative Kerr soliton, this versatile platform enables realizing long-awaited phenomena such as defect-carrying DTCs and phase transitions. Combined with monolithic microfabrication, this room-temperature system paves the way for chip-scale time crystals supporting real-world applications outside sophisticated laboratories.

Suggested Citation

  • Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28462-x
    DOI: 10.1038/s41467-022-28462-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28462-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28462-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Zhang & P. W. Hess & A. Kyprianidis & P. Becker & A. Lee & J. Smith & G. Pagano & I.-D. Potirniche & A. C. Potter & A. Vishwanath & N. Y. Yao & C. Monroe, 2017. "Observation of a discrete time crystal," Nature, Nature, vol. 543(7644), pages 217-220, March.
    2. W. Liang & D. Eliyahu & V. S. Ilchenko & A. A. Savchenkov & A. B. Matsko & D. Seidel & L. Maleki, 2015. "High spectral purity Kerr frequency comb radio frequency photonic oscillator," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Jae K. Jang & Miro Erkintalo & Stéphane Coen & Stuart G. Murdoch, 2015. "Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    4. Kevin E. Strecker & Guthrie B. Partridge & Andrew G. Truscott & Randall G. Hulet, 2002. "Formation and propagation of matter-wave soliton trains," Nature, Nature, vol. 417(6885), pages 150-153, May.
    5. Andrea Pizzi & Johannes Knolle & Andreas Nunnenkamp, 2021. "Higher-order and fractional discrete time crystals in clean long-range interacting systems," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Soonwon Choi & Joonhee Choi & Renate Landig & Georg Kucsko & Hengyun Zhou & Junichi Isoya & Fedor Jelezko & Shinobu Onoda & Hitoshi Sumiya & Vedika Khemani & Curt von Keyserlingk & Norman Y. Yao & Eug, 2017. "Observation of discrete time-crystalline order in a disordered dipolar many-body system," Nature, Nature, vol. 543(7644), pages 221-225, March.
    7. W. Liang & V. S. Ilchenko & D. Eliyahu & A. A. Savchenkov & A. B. Matsko & D. Seidel & L. Maleki, 2015. "Ultralow noise miniature external cavity semiconductor laser," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Victor Mukherjee & Uma Divakaran, 2024. "The promises and challenges of many-body quantum technologies: A focus on quantum engines," Nature Communications, Nature, vol. 15(1), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinhold Kleiner & Xianjing Zhou & Eric Dorsch & Xufeng Zhang & Dieter Koelle & Dafei Jin, 2021. "Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. L. J. Stanley & Ping V. Lin & J. Jaroszyński & Dragana Popović, 2023. "Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. S. Autti & P. J. Heikkinen & J. Nissinen & J. T. Mäkinen & G. E. Volovik & V. V. Zavyalov & V. B. Eltsov, 2022. "Nonlinear two-level dynamics of quantum time crystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Malomed, Boris A. & Nascimento, V.A. & Adhikari, Sadhan K., 2009. "Gap solitons in fermion superfluids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(4), pages 648-659.
    7. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Stéphane Coen & Bruno Garbin & Gang Xu & Liam Quinn & Nathan Goldman & Gian-Luca Oppo & Miro Erkintalo & Stuart G. Murdoch & Julien Fatome, 2024. "Nonlinear topological symmetry protection in a dissipative system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Mohamad Hossein Idjadi & Kwangwoong Kim & Nicolas K. Fontaine, 2024. "Modulation-free laser stabilization technique using integrated cavity-coupled Mach-Zehnder interferometer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Natanael Karjanto, 2022. "Bright Soliton Solution of the Nonlinear Schrödinger Equation: Fourier Spectrum and Fundamental Characteristics," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    12. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Huang, Hao & Wang, Hongcheng & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2022. "Binary-vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Yanwu Gu & Wei-Feng Zhuang & Xudan Chai & Dong E. Liu, 2023. "Benchmarking universal quantum gates via channel spectrum," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Jung, Pawel S. & Pyrialakos, Georgios G. & Pilka, Jacek & Kwasny, Michal & Laudyn, Ula & Trippenbach, Marek & Christodoulides, Demetrios N. & Krolikowski, Wieslaw, 2023. "Stable fundamental two-dimensional solitons in media with competing nonlocal interactions," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    16. Shi, Zeyun & Badshah, Fazal & Qin, Lu & Zhou, Yuan & Huang, Haibo & Zhang, Yong-Chang, 2023. "Spatially modulated control of pattern formation in a general nonlocal nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. E. J. Wildman & G. B. Lawrence & A. Walsh & K. Morita & S. Simpson & C. Ritter & G. B. G. Stenning & A. M. Arevalo-Lopez & A. C. Mclaughlin, 2023. "Observation of an exotic insulator to insulator transition upon electron doping the Mott insulator CeMnAsO," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28462-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.