IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60630-7.html
   My bibliography  Save this article

Low-noise frequency synthesis and terahertz wireless communication driven by compact turnkey Kerr combs

Author

Listed:
  • Kunpeng Jia

    (Nanjing University)

  • Yuancheng Cai

    (Purple Mountain Laboratories
    Southeast University)

  • Xinwei Yi

    (Nanjing University)

  • Chenye Qin

    (Nanjing University)

  • Zexing Zhao

    (Nanjing University)

  • Xiaohan Wang

    (Nanjing University)

  • Yunfeng Liu

    (Chinese Academy of Sciences)

  • Xiaofan Zhang

    (Nanjing University)

  • Shanshan Cheng

    (Nanjing University)

  • Xiaoshun Jiang

    (Nanjing University)

  • Chong Sheng

    (Nanjing University)

  • Yongming Huang

    (Purple Mountain Laboratories
    Southeast University)

  • Jianjun Yu

    (Purple Mountain Laboratories
    Fudan University)

  • Hui Liu

    (Nanjing University)

  • Biaobing Jin

    (Nanjing University
    Purple Mountain Laboratories)

  • Xiaohu You

    (Purple Mountain Laboratories
    Southeast University)

  • Shi-ning Zhu

    (Nanjing University)

  • Wei Liang

    (Chinese Academy of Sciences)

  • Min Zhu

    (Purple Mountain Laboratories
    Southeast University)

  • Zhenda Xie

    (Nanjing University)

Abstract

High frequency microwave, spanning up to terahertz frequency, is pivotal for next-generation communication, sensing and radar. However, it faces fundamental noise limitations when frequency is pushed towards such boundary of conventional electronic technologies. Photonic microwave generation, particularly Kerr-comb-based microwave source, benefits from high frequency operation but still suffers from phase noise constraints. Here we overcome this drawback by developing a compact, electrically-driven Kerr comb system that achieves near quantum-limited phase noise for microwave synthesis up to 384 GHz. Leveraging high-Q fiber Fabry-Perot resonators and optimized noise modeling under limited pump power, we demonstrate ultra-low phase noise performances of −133 dBc/Hz (10.1 GHz) and −95 dBc/Hz (300 GHz) at 10 kHz offset, approaching quantum noise limits. This breakthrough enables 64QAM modulation in terahertz wireless communication and record 240 Gbps data rate without need for carrier phase estimation. Our device can serve as a key building block for the future information technology.

Suggested Citation

  • Kunpeng Jia & Yuancheng Cai & Xinwei Yi & Chenye Qin & Zexing Zhao & Xiaohan Wang & Yunfeng Liu & Xiaofan Zhang & Shanshan Cheng & Xiaoshun Jiang & Chong Sheng & Yongming Huang & Jianjun Yu & Hui Liu , 2025. "Low-noise frequency synthesis and terahertz wireless communication driven by compact turnkey Kerr combs," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60630-7
    DOI: 10.1038/s41467-025-60630-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60630-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60630-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Shi Jia & Mu-Chieh Lo & Lu Zhang & Oskars Ozolins & Aleksejs Udalcovs & Deming Kong & Xiaodan Pang & Robinson Guzman & Xianbin Yu & Shilin Xiao & Sergei Popov & Jiajia Chen & Guillermo Carpintero & To, 2022. "Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Lars Lundberg & Mikael Mazur & Ali Mirani & Benjamin Foo & Jochen Schröder & Victor Torres-Company & Magnus Karlsson & Peter A. Andrekson, 2020. "Phase-coherent lightwave communications with frequency combs," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Boqiang Shen & Lin Chang & Junqiu Liu & Heming Wang & Qi-Fan Yang & Chao Xiang & Rui Ning Wang & Jijun He & Tianyi Liu & Weiqiang Xie & Joel Guo & David Kinghorn & Lue Wu & Qing-Xin Ji & Tobias J. Kip, 2020. "Integrated turnkey soliton microcombs," Nature, Nature, vol. 582(7812), pages 365-369, June.
    5. Dong-Chel Shin & Byung Soo Kim & Heesuk Jang & Young-Jin Kim & Seung-Woo Kim, 2023. "Photonic comb-rooted synthesis of ultra-stable terahertz frequencies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Th. Udem & R. Holzwarth & T. W. Hänsch, 2002. "Optical frequency metrology," Nature, Nature, vol. 416(6877), pages 233-237, March.
    7. W. Liang & D. Eliyahu & V. S. Ilchenko & A. A. Savchenkov & A. B. Matsko & D. Seidel & L. Maleki, 2015. "High spectral purity Kerr frequency comb radio frequency photonic oscillator," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    8. Andrey S. Voloshin & Nikita M. Kondratiev & Grigory V. Lihachev & Junqiu Liu & Valery E. Lobanov & Nikita Yu. Dmitriev & Wenle Weng & Tobias J. Kippenberg & Igor A. Bilenko, 2021. "Dynamics of soliton self-injection locking in optical microresonators," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Eric A. Kittlaus & Danny Eliyahu & Setareh Ganji & Skip Williams & Andrey B. Matsko & Ken B. Cooper & Siamak Forouhar, 2021. "A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. W. Liang & V. S. Ilchenko & D. Eliyahu & A. A. Savchenkov & A. B. Matsko & D. Seidel & L. Maleki, 2015. "Ultralow noise miniature external cavity semiconductor laser," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Thibault Wildi & Alexander E. Ulanov & Thibault Voumard & Bastian Ruhnke & Tobias Herr, 2024. "Phase-stabilised self-injection-locked microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Qiang Wang & Zhen Wang & Hui Zhang & Shoulin Jiang & Yingying Wang & Wei Jin & Wei Ren, 2022. "Dual-comb photothermal spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Yuanbin Liu & Hongyi Zhang & Jiacheng Liu & Liangjun Lu & Jiangbing Du & Yu Li & Zuyuan He & Jianping Chen & Linjie Zhou & Andrew W. Poon, 2024. "Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Yu, Zhengxin & Ren, Longfei & Li, Lang & Dai, Chaoqing & Wang, Yueyue, 2024. "Data-driven prediction of vortex solitons and multipole solitons in whispering gallery mode microresonator," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    11. Shahab Abdollahi & Mathieu Ladouce & Pablo Marin-Palomo & Martin Virte, 2024. "Agile THz-range spectral multiplication of frequency combs using a multi-wavelength laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Fuchuan Lei & Zhichao Ye & Óskar B. Helgason & Attila Fülöp & Marcello Girardi & Victor Torres-Company, 2022. "Optical linewidth of soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Rui Niu & Ming Li & Shuai Wan & Yu Robert Sun & Shui-Ming Hu & Chang-Ling Zou & Guang-Can Guo & Chun-Hua Dong, 2023. "kHz-precision wavemeter based on reconfigurable microsoliton," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    17. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Rebecca Cheng & Mengjie Yu & Amirhassan Shams-Ansari & Yaowen Hu & Christian Reimer & Mian Zhang & Marko Lončar, 2024. "Frequency comb generation via synchronous pumped χ(3) resonator on thin-film lithium niobate," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Timothy P. McKenna & Hubert S. Stokowski & Vahid Ansari & Jatadhari Mishra & Marc Jankowski & Christopher J. Sarabalis & Jason F. Herrmann & Carsten Langrock & Martin M. Fejer & Amir H. Safavi-Naeini, 2022. "Ultra-low-power second-order nonlinear optics on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Hussein M. E. Hussein & Seunghwi Kim & Matteo Rinaldi & Andrea Alù & Cristian Cassella, 2024. "Passive frequency comb generation at radiofrequency for ranging applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60630-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.