IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61173-7.html
   My bibliography  Save this article

Spontaneously formed phonon frequency combs in van der Waals solid CrGeTe3 and CrSiTe3

Author

Listed:
  • Lebing Chen

    (University of California
    Lawrence Berkeley National Laboratory)

  • Gaihua Ye

    (Texas Tech University)

  • Cynthia Nnokwe

    (Texas Tech University)

  • Xing-Chen Pan

    (Tohoku University)

  • Katsumi Tanigaki

    (Tohoku University
    Tohoku University)

  • Guanghui Cheng

    (Tohoku University
    Purdue University
    Purdue University)

  • Yong P. Chen

    (Tohoku University
    Purdue University
    Purdue University
    Aarhus University)

  • Jiaqiang Yan

    (University of Tennessee
    Oak Ridge National Laboratory)

  • David G. Mandrus

    (University of Tennessee
    Oak Ridge National Laboratory)

  • Andres E. Llacsahuanga Allcca

    (Purdue University)

  • Nathan Giles-Donovan

    (University of California
    Lawrence Berkeley National Laboratory)

  • Robert J. Birgeneau

    (University of California
    Lawrence Berkeley National Laboratory)

  • Rui He

    (Texas Tech University)

Abstract

Optical phonon engineering through nonlinear effects has been utilized in ultrafast control of material properties. However, nonlinear optical phonons typically exhibit rapid decay due to strong mode-mode couplings, limiting their effectiveness in temperature or frequency sensitive applications. Here we report the observation of long-lived nonlinear optical phonons through the spontaneous formation of phonon frequency combs in the van der Waals material CrXTe3 (X=Ge, Si) using high-resolution Raman scattering. Unlike conventional optical phonons, the highest Ag mode in CrGeTe3 splits into equidistant, sharp peaks forming a frequency comb that persists for hundreds of oscillations and survives up to 200K. These modes correspond to localized oscillations of Ge2Te6 clusters, isolated from Cr hexagons, behaving as independent quantum oscillators. Introducing a cubic nonlinear term to the harmonic oscillator model, we simulate the phonon time evolution and successfully replicate the observed comb structure. Similar frequency comb behavior is observed in CrSiTe3, demonstrating the generalizability of this phenomenon. Our findings demonstrate that Raman scattering effectively probes high-frequency nonlinear phonon modes, offering insight into the generation of long-lived, tunable phonon frequency combs with potential applications in ultrafast material control and phonon-based technologies.

Suggested Citation

  • Lebing Chen & Gaihua Ye & Cynthia Nnokwe & Xing-Chen Pan & Katsumi Tanigaki & Guanghui Cheng & Yong P. Chen & Jiaqiang Yan & David G. Mandrus & Andres E. Llacsahuanga Allcca & Nathan Giles-Donovan & R, 2025. "Spontaneously formed phonon frequency combs in van der Waals solid CrGeTe3 and CrSiTe3," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61173-7
    DOI: 10.1038/s41467-025-61173-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61173-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61173-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoseob Yoon & Zheyu Lu & Can Uzundal & Ruishi Qi & Wenyu Zhao & Sudi Chen & Qixin Feng & Woochang Kim & Mit H. Naik & Kenji Watanabe & Takashi Taniguchi & Steven G. Louie & Michael F. Crommie & Feng W, 2024. "Terahertz phonon engineering with van der Waals heterostructures," Nature, Nature, vol. 631(8022), pages 771-776, July.
    2. A. Ron & E. Zoghlin & L. Balents & S. D. Wilson & D. Hsieh, 2019. "Dimensional crossover in a layered ferromagnet detected by spin correlation driven distortions," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. Th. Udem & R. Holzwarth & T. W. Hänsch, 2002. "Optical frequency metrology," Nature, Nature, vol. 416(6877), pages 233-237, March.
    4. Cheng Gong & Lin Li & Zhenglu Li & Huiwen Ji & Alex Stern & Yang Xia & Ting Cao & Wei Bao & Chenzhe Wang & Yuan Wang & Z. Q. Qiu & R. J. Cava & Steven G. Louie & Jing Xia & Xiang Zhang, 2017. "Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals," Nature, Nature, vol. 546(7657), pages 265-269, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maya Khela & Maciej Da̧browski & Safe Khan & Paul S. Keatley & Ivan Verzhbitskiy & Goki Eda & Robert J. Hicken & Hidekazu Kurebayashi & Elton J. G. Santos, 2023. "Laser-induced topological spin switching in a 2D van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Zefang Li & Huai Zhang & Guanqi Li & Jiangteng Guo & Qingping Wang & Ying Deng & Yue Hu & Xuange Hu & Can Liu & Minghui Qin & Xi Shen & Richeng Yu & Xingsen Gao & Zhimin Liao & Junming Liu & Zhipeng H, 2024. "Room-temperature sub-100 nm Néel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe3-xGaTe2 with ultrafast laser writability," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    5. Märta A. Tschudin & David A. Broadway & Patrick Siegwolf & Carolin Schrader & Evan J. Telford & Boris Gross & Jordan Cox & Adrien E. E. Dubois & Daniel G. Chica & Ricardo Rama-Eiroa & Elton J. G. Sant, 2024. "Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Freddie Hendriks & Rafael R. Rojas-Lopez & Bert Koopmans & Marcos H. D. Guimarães, 2024. "Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Sarah Jenkins & Levente Rózsa & Unai Atxitia & Richard F. L. Evans & Kostya S. Novoselov & Elton J. G. Santos, 2022. "Breaking through the Mermin-Wagner limit in 2D van der Waals magnets," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Lebing Chen & Chengjie Mao & Jae-Ho Chung & Matthew B. Stone & Alexander I. Kolesnikov & Xiaoping Wang & Naoki Murai & Bin Gao & Olivier Delaire & Pengcheng Dai, 2022. "Anisotropic magnon damping by zero-temperature quantum fluctuations in ferromagnetic CrGeTe3," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Yong Zhong & Cheng Peng & Haili Huang & Dandan Guan & Jinwoong Hwang & Kuan H. Hsu & Yi Hu & Chunjing Jia & Brian Moritz & Donghui Lu & Jun-Sik Lee & Jin-Feng Jia & Thomas P. Devereaux & Sung-Kwan Mo , 2023. "From Stoner to local moment magnetism in atomically thin Cr2Te3," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Liu, Yilou & Zhao, Rui-Shan & Zhang, Kai-Kai & Jia, Ziyu & Wan, Ren-Gang & Sun, Hui & Yang, Wen-Xing & Xie, Xiao-Tao, 2024. "Optical frequency combs and chaos in a hybrid atom–cavity optomagnonical system via the synergy of double-probe fields," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    11. Maciej Da̧browski & Shi Guo & Mara Strungaru & Paul S. Keatley & Freddie Withers & Elton J. G. Santos & Robert J. Hicken, 2022. "All-optical control of spin in a 2D van der Waals magnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Yongxi Ou & Wilson Yanez & Run Xiao & Max Stanley & Supriya Ghosh & Boyang Zheng & Wei Jiang & Yu-Sheng Huang & Timothy Pillsbury & Anthony Richardella & Chaoxing Liu & Tony Low & Vincent H. Crespi & , 2022. "ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Sihua Feng & Hengli Duan & Hao Tan & Fengchun Hu & Chaocheng Liu & Yao Wang & Zhi Li & Liang Cai & Yuyang Cao & Chao Wang & Zeming Qi & Li Song & Xuguang Liu & Zhihu Sun & Wensheng Yan, 2023. "Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Guojing Hu & Changlong Wang & Shasha Wang & Ying Zhang & Yan Feng & Zhi Wang & Qian Niu & Zhenyu Zhang & Bin Xiang, 2023. "Long-range skin Josephson supercurrent across a van der Waals ferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    16. Lijia Li & Jiajun Chen & Laigui Hu & Zhijun Qiu & Zhuo Zou & Ran Liu & Lirong Zheng & Chunxiao Cong, 2025. "Moiré collective vibrations in atomically thin van der Waals superlattices," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    17. Jun Cui & Emil Viñas Boström & Mykhaylo Ozerov & Fangliang Wu & Qianni Jiang & Jiun-Haw Chu & Changcun Li & Fucai Liu & Xiaodong Xu & Angel Rubio & Qi Zhang, 2023. "Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Hangtian Wang & Haichang Lu & Zongxia Guo & Ang Li & Peichen Wu & Jing Li & Weiran Xie & Zhimei Sun & Peng Li & Héloïse Damas & Anna Maria Friedel & Sylvie Migot & Jaafar Ghanbaja & Luc Moreau & Yanni, 2023. "Interfacial engineering of ferromagnetism in wafer-scale van der Waals Fe4GeTe2 far above room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Xing Cheng & Zhixuan Cheng & Cong Wang & Minglai Li & Pingfan Gu & Shiqi Yang & Yanping Li & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Lun Dai, 2021. "Light helicity detector based on 2D magnetic semiconductor CrI3," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    20. Shun Akatsuka & Sebastian Esser & Shun Okumura & Ryota Yambe & Rinsuke Yamada & Moritz M. Hirschmann & Seno Aji & Jonathan S. White & Shang Gao & Yoshichika Onuki & Taka-hisa Arima & Taro Nakajima & M, 2024. "Non-coplanar helimagnetism in the layered van-der-Waals metal DyTe3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61173-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.