IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41905-3.html
   My bibliography  Save this article

Realization of an inherent time crystal in a dissipative many-body system

Author

Listed:
  • Yu-Hui Chen

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Xiangdong Zhang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

Abstract

Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.

Suggested Citation

  • Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41905-3
    DOI: 10.1038/s41467-023-41905-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41905-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41905-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao Mi & Matteo Ippoliti & Chris Quintana & Ami Greene & Zijun Chen & Jonathan Gross & Frank Arute & Kunal Arya & Juan Atalaya & Ryan Babbush & Joseph C. Bardin & Joao Basso & Andreas Bengtsson & Ale, 2022. "Time-crystalline eigenstate order on a quantum processor," Nature, Nature, vol. 601(7894), pages 531-536, January.
    2. J. Zhang & P. W. Hess & A. Kyprianidis & P. Becker & A. Lee & J. Smith & G. Pagano & I.-D. Potirniche & A. C. Potter & A. Vishwanath & N. Y. Yao & C. Monroe, 2017. "Observation of a discrete time crystal," Nature, Nature, vol. 543(7644), pages 217-220, March.
    3. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xu Zhang & Wenjie Jiang & Jinfeng Deng & Ke Wang & Jiachen Chen & Pengfei Zhang & Wenhui Ren & Hang Dong & Shibo Xu & Yu Gao & Feitong Jin & Xuhao Zhu & Qiujiang Guo & Hekang Li & Chao Song & Alexey V, 2022. "Digital quantum simulation of Floquet symmetry-protected topological phases," Nature, Nature, vol. 607(7919), pages 468-473, July.
    5. Soonwon Choi & Joonhee Choi & Renate Landig & Georg Kucsko & Hengyun Zhou & Junichi Isoya & Fedor Jelezko & Shinobu Onoda & Hitoshi Sumiya & Vedika Khemani & Curt von Keyserlingk & Norman Y. Yao & Eug, 2017. "Observation of discrete time-crystalline order in a disordered dipolar many-body system," Nature, Nature, vol. 543(7644), pages 221-225, March.
    6. Berislav Buča & Joseph Tindall & Dieter Jaksch, 2019. "Non-stationary coherent quantum many-body dynamics through dissipation," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Autti & P. J. Heikkinen & J. Nissinen & J. T. Mäkinen & G. E. Volovik & V. V. Zavyalov & V. B. Eltsov, 2022. "Nonlinear two-level dynamics of quantum time crystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Reinhold Kleiner & Xianjing Zhou & Eric Dorsch & Xufeng Zhang & Dieter Koelle & Dafei Jin, 2021. "Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. L. J. Stanley & Ping V. Lin & J. Jaroszyński & Dragana Popović, 2023. "Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Yanwu Gu & Wei-Feng Zhuang & Xudan Chai & Dong E. Liu, 2023. "Benchmarking universal quantum gates via channel spectrum," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Henrik Wilming & Tobias J. Osborne & Kevin S. C. Decker & Christoph Karrasch, 2023. "Reviving product states in the disordered Heisenberg chain," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Victor Mukherjee & Uma Divakaran, 2024. "The promises and challenges of many-body quantum technologies: A focus on quantum engines," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    10. E. J. Wildman & G. B. Lawrence & A. Walsh & K. Morita & S. Simpson & C. Ritter & G. B. G. Stenning & A. M. Arevalo-Lopez & A. C. Mclaughlin, 2023. "Observation of an exotic insulator to insulator transition upon electron doping the Mott insulator CeMnAsO," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Joseph Tindall & Amy Searle & Abdulla Alhajri & Dieter Jaksch, 2022. "Quantum physics in connected worlds," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41905-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.