IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v195y2025ics0960077925003005.html
   My bibliography  Save this article

Instability-driven dynamics of spin–orbit and Rabi-coupled Bose–Einstein condensates

Author

Listed:
  • Ravisankar, Rajamanickam
  • Rajaswathi, Kannan
  • Radha, Ramaswamy
  • Muruganandam, Paulsamy
  • Gao, Xianlong

Abstract

We investigate the dynamics of quasi-one-dimensional Bose–Einstein condensates (BECs) with spin–orbit and Rabi couplings focusing on the role of nonlinear interactions in shaping the stability and dynamics of quantum phases like plane-wave and stripe-wave phases. Using the Bogoliubov–de-Gennes theory, we first analyze the stability of binary BECs with and without spin–orbit and Rabi couplings. Our results reveal distinct unstable and stable regimes in the nonlinear interaction parameter space, highlighting the emergence of soliton trains, beating effects, and stable breathers in both quantum phases under varying nonlinear interaction strengths and non-equilibrium conditions. Furthermore, we identify that specific combinations of interspecies and intraspecies interactions facilitate the emergence of the stable phonons and infinitesimal roton instabilities, which underpin the dynamically stable superfluid quantum droplet-like nature of the plane-wave and stripe-wave phases. In this context, stable phonons create quantum droplet-like structures in the absence of a trap. However, infinitesimal roton instabilities result in metastable states that can be stabilized with a relatively weak trap leading to stable stripe quantum droplets. These results which are validated through numerical simulations provide deeper insights into the nonlinear effects in spin–orbit and Rabi-coupled BECs.

Suggested Citation

  • Ravisankar, Rajamanickam & Rajaswathi, Kannan & Radha, Ramaswamy & Muruganandam, Paulsamy & Gao, Xianlong, 2025. "Instability-driven dynamics of spin–orbit and Rabi-coupled Bose–Einstein condensates," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925003005
    DOI: 10.1016/j.chaos.2025.116287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925003005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.