IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58751-0.html
   My bibliography  Save this article

Quantum reservoir probing of quantum phase transitions

Author

Listed:
  • Kaito Kobayashi

    (University of Tokyo)

  • Yukitoshi Motome

    (University of Tokyo)

Abstract

Quantum phase transitions are highly remarkable phenomena manifesting in quantum many-body systems. However, their precise identifications in equilibrium systems pose significant theoretical and experimental challenges. Thus far, dynamical detection protocols employing global quantum quenches have been proposed, wherein transitions are discerned via global nonequilibrium excitations. In this work, we demonstrate that quantum phase transitions can be detected through localized out-of-equilibrium excitations induced by local quantum quenches. While the resulting dynamics after the quench is influenced by both the local quench operation and the intrinsic dynamics of the quantum system, the effects of the former are exclusively extracted using the cutting-edge framework called quantum reservoir probing (QRP). Through the QRP, we find that the impacts of the local quenches vary across different quantum phases and are significantly suppressed by quantum fluctuations amplified near quantum critical points; consequently, phase boundaries are precisely delineated. We demonstrate that the QRP can detect quantum phase transitions in the paradigmatic integrable and nonintegrable quantum spin systems, and even topological quantum phase transitions, all within the identical framework employing local quantum quenches and single-site observables.

Suggested Citation

  • Kaito Kobayashi & Yukitoshi Motome, 2025. "Quantum reservoir probing of quantum phase transitions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58751-0
    DOI: 10.1038/s41467-025-58751-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58751-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58751-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hannes Bernien & Sylvain Schwartz & Alexander Keesling & Harry Levine & Ahmed Omran & Hannes Pichler & Soonwon Choi & Alexander S. Zibrov & Manuel Endres & Markus Greiner & Vladan Vuletić & Mikhail D., 2017. "Probing many-body dynamics on a 51-atom quantum simulator," Nature, Nature, vol. 551(7682), pages 579-584, November.
    2. Soonwon Choi & Joonhee Choi & Renate Landig & Georg Kucsko & Hengyun Zhou & Junichi Isoya & Fedor Jelezko & Shinobu Onoda & Hitoshi Sumiya & Vedika Khemani & Curt von Keyserlingk & Norman Y. Yao & Eug, 2017. "Observation of discrete time-crystalline order in a disordered dipolar many-body system," Nature, Nature, vol. 543(7644), pages 221-225, March.
    3. Philip Richerme & Zhe-Xuan Gong & Aaron Lee & Crystal Senko & Jacob Smith & Michael Foss-Feig & Spyridon Michalakis & Alexey V. Gorshkov & Christopher Monroe, 2014. "Non-local propagation of correlations in quantum systems with long-range interactions," Nature, Nature, vol. 511(7508), pages 198-201, July.
    4. Toshiya Kinoshita & Trevor Wenger & David S. Weiss, 2006. "A quantum Newton's cradle," Nature, Nature, vol. 440(7086), pages 900-903, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bang Liu & Li-Hua Zhang & Yu Ma & Qi-Feng Wang & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Guang-Can Guo & Dong-Sheng Ding & Bao-Sen Shi, 2025. "Bifurcation of time crystals in driven and dissipative Rydberg atomic gas," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Bang Liu & Li-Hua Zhang & Qi-Feng Wang & Yu Ma & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Bao-Sen Shi & Dong-Sheng Ding, 2024. "Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Zehang Bao & Shibo Xu & Zixuan Song & Ke Wang & Liang Xiang & Zitian Zhu & Jiachen Chen & Feitong Jin & Xuhao Zhu & Yu Gao & Yaozu Wu & Chuanyu Zhang & Ning Wang & Yiren Zou & Ziqi Tan & Aosai Zhang &, 2024. "Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Reinhold Kleiner & Xianjing Zhou & Eric Dorsch & Xufeng Zhang & Dieter Koelle & Dafei Jin, 2021. "Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Danyel Cavazos-Cavazos & Ruwan Senaratne & Aashish Kafle & Randall G. Hulet, 2023. "Thermal disruption of a Luttinger liquid," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    6. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Ferenc Iglói & Csaba Zoltán Király, 2024. "Entanglement detection in postquench nonequilibrium states: thermal Gibbs vs. generalized Gibbs ensemble," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-12, June.
    9. Egor I. Kiselev & Mark S. Rudner & Netanel H. Lindner, 2024. "Inducing exceptional points, enhancing plasmon quality and creating correlated plasmon states with modulated Floquet parametric driving," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Sam C. Scholten & Priya Singh & Alexander J. Healey & Islay O. Robertson & Galya Haim & Cheng Tan & David A. Broadway & Lan Wang & Hiroshi Abe & Takeshi Ohshima & Mehran Kianinia & Philipp Reineck & I, 2024. "Multi-species optically addressable spin defects in a van der Waals material," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. L. J. Stanley & Ping V. Lin & J. Jaroszyński & Dragana Popović, 2023. "Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Matthew J. O’Rourke & Garnet Kin-Lic Chan, 2023. "Entanglement in the quantum phases of an unfrustrated Rydberg atom array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Stuart J. Masson & Ana Asenjo-Garcia, 2022. "Universality of Dicke superradiance in arrays of quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Jinzhao Sun & Lucia Vilchez-Estevez & Vlatko Vedral & Andrew T. Boothroyd & M. S. Kim, 2025. "Probing spectral features of quantum many-body systems with quantum simulators," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Weixuan Zhang & Wenhui Cao & Long Qian & Hao Yuan & Xiangdong Zhang, 2025. "Topolectrical space-time circuits," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Shraddha Sharma & Tanay Nag & Atanu Rajak & Souvik Bandyopadhyay & Sourav Bhattacharjee & Somnath Maity & Utso Bhattacharya, 2024. "Unquenched—a memoir on non-equilibrium dynamics of quantum many-body systems: honoring Amit Dutta," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(7), pages 1-16, July.
    18. A V Antipov & E O Kiktenko & A K Fedorov, 2022. "Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-17, July.
    19. Giacomo Torlai & Christopher J. Wood & Atithi Acharya & Giuseppe Carleo & Juan Carrasquilla & Leandro Aolita, 2023. "Quantum process tomography with unsupervised learning and tensor networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Katrina Barnes & Peter Battaglino & Benjamin J. Bloom & Kayleigh Cassella & Robin Coxe & Nicole Crisosto & Jonathan P. King & Stanimir S. Kondov & Krish Kotru & Stuart C. Larsen & Joseph Lauigan & Bri, 2022. "Assembly and coherent control of a register of nuclear spin qubits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58751-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.