IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58751-0.html
   My bibliography  Save this article

Quantum reservoir probing of quantum phase transitions

Author

Listed:
  • Kaito Kobayashi

    (University of Tokyo)

  • Yukitoshi Motome

    (University of Tokyo)

Abstract

Quantum phase transitions are highly remarkable phenomena manifesting in quantum many-body systems. However, their precise identifications in equilibrium systems pose significant theoretical and experimental challenges. Thus far, dynamical detection protocols employing global quantum quenches have been proposed, wherein transitions are discerned via global nonequilibrium excitations. In this work, we demonstrate that quantum phase transitions can be detected through localized out-of-equilibrium excitations induced by local quantum quenches. While the resulting dynamics after the quench is influenced by both the local quench operation and the intrinsic dynamics of the quantum system, the effects of the former are exclusively extracted using the cutting-edge framework called quantum reservoir probing (QRP). Through the QRP, we find that the impacts of the local quenches vary across different quantum phases and are significantly suppressed by quantum fluctuations amplified near quantum critical points; consequently, phase boundaries are precisely delineated. We demonstrate that the QRP can detect quantum phase transitions in the paradigmatic integrable and nonintegrable quantum spin systems, and even topological quantum phase transitions, all within the identical framework employing local quantum quenches and single-site observables.

Suggested Citation

  • Kaito Kobayashi & Yukitoshi Motome, 2025. "Quantum reservoir probing of quantum phase transitions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58751-0
    DOI: 10.1038/s41467-025-58751-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58751-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58751-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58751-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.