IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62597-x.html
   My bibliography  Save this article

Knowledge-guided self-learning control strategy for mixed vehicle platoons with delays

Author

Listed:
  • Jingyao Wang

    (Xiamen University)

  • Huinian Wang

    (Xiamen University)

  • Jian Song

    (Xiamen University)

  • Xingyu Chen

    (Xiamen University)

  • Jinghua Guo

    (Xiamen University)

  • Keqiang Li

    (Tsinghua University)

  • Xunrui Li

    (Xiamen University)

  • Bowen Huang

    (Chongqing University)

Abstract

As autonomous vehicles and traditional vehicles will coexist for several decades, how to efficiently manage the mixed traffic, while enhancing road throughput, fuel consumption and traffic stability becomes a challenge. This is due to the randomness and heterogeneity of traditional vehicles interspersed among autonomous vehicles. Moreover, communication delays arising from the shared wireless communication network substantially degrade the performance of platooning control for connected autonomous vehicles. To address these challenging problems, this paper proposes a knowledge-guided self-learning mixed platoon control strategy. Firstly, the proposed strategy extracts key features of the continuous and aggregated behavior of traditional vehicles, such as desired time-varying time gap and standstill spacing, by integrating knowledge from the kinematic wave model and Newell’s car-following model. This helps autonomous vehicles predict traditional vehicles’ trajectories. Secondly, to tackle delayed current state information, the study incorporates previous control instructions into the state representation of the soft actor-critic algorithm. Simulations show the proposed strategy outperforms existing methods in traffic stability, passenger comfort, energy consumption cost and traffic oscillation dampening, with a zero collision rate in vehicle merging and diverging scenarios. The framework provides a generalizable and scalable solution for the development and adoption of connected autonomous vehicle systems.

Suggested Citation

  • Jingyao Wang & Huinian Wang & Jian Song & Xingyu Chen & Jinghua Guo & Keqiang Li & Xunrui Li & Bowen Huang, 2025. "Knowledge-guided self-learning control strategy for mixed vehicle platoons with delays," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62597-x
    DOI: 10.1038/s41467-025-62597-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62597-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62597-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Abdel-Aty & Shengxuan Ding, 2024. "A matched case-control analysis of autonomous vs human-driven vehicle accidents," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Coifman, Benjamin & Li, Lizhe, 2017. "A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 362-377.
    3. Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    5. Liu, Chunyu & Sheng, Zihao & Chen, Sikai & Shi, Haotian & Ran, Bin, 2023. "Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Shuoxuan & Zhou, Yang & Chen, Tianyi & Li, Shen & Gao, Qiantong & Ran, Bin, 2021. "An integrated Empirical Mode Decomposition and Butterworth filter based vehicle trajectory reconstruction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Jiang, Jiwan & Zhou, Yang & Wang, Xin & Ahn, Soyoung, 2024. "On dynamic fundamental diagrams: Implications for automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    3. Wang, Xianing & Lu, Linjun & Zhang, Zhan & Wang, Ying & Li, Haoming, 2025. "Introducing the vehicle-infrastructure cooperative control system by quantifying the benefits for the scenario of signalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    4. Li, Xiaopeng, 2022. "Trade-off between safety, mobility and stability in automated vehicle following control: An analytical method," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 1-18.
    5. Ding, Heng & Sun, Yuan & Wang, Liangwen & Zheng, Xiaoyan & Huang, Wenjuan & Lu, Xiaoshan, 2024. "Intersection eco-driving strategies under mixed traffic environment: An novel cooperation of traffic signal and vehicle trajectory planning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
    6. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    7. Dong, Haoxuan & Shi, Junzhe & Zhuang, Weichao & Li, Zhaojian & Song, Ziyou, 2025. "Analyzing the impact of mixed vehicle platoon formations on vehicle energy and traffic efficiencies," Applied Energy, Elsevier, vol. 377(PA).
    8. Wu, Zhibei & Sun, Jitao & Xu, Ruihua, 2021. "Consensus-based connected vehicles platoon control via impulsive control method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Dai, Yulu & Yang, Yuwei & Wang, Zhiyuan & Luo, YinJie, 2022. "Exploring the impact of damping on Connected and Autonomous Vehicle platoon safety with CACC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Zhao, Jiandong & Yu, Zhixin & Jiang, Rui & Wu, Di & Zheng, Shiteng, 2025. "Car following trajectory planning of CAVs: An improved APF model with considering the stochasticity of HDVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    11. Chen, Kehua & Zhu, Meixin & Sun, Lijun & Yang, Hai, 2024. "Combining time dependency and behavioral game: A Deep Markov Cognitive Hierarchy Model for human-like discretionary lane changing modeling," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    12. Li, Jianqi & Yang, Hang & Cheng, Rongjun & Zheng, Pengjun & Wu, Bing, 2024. "A dynamic temporal and spatial speed control strategy for partially connected automated vehicles at a signalized arterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    13. Li, Xia & Pang, Xiaomin & Zhang, Song & You, Zhijian & Ma, Xinwei & Chuo, Eryong, 2024. "Car-following model based on artificial potential field with consideration of horizontal curvature in connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    14. Dhari Ali Mahmood & Gábor Horváth, 2020. "Analysis of the Message Propagation Speed in VANET with Disconnected RSUs," Mathematics, MDPI, vol. 8(5), pages 1-21, May.
    15. Pu, Chenlu & Du, Lili, 2025. "Online adaptive shockwave detection and inpainting based on vehicle trajectory data: rigorous algorithm design and theory development," Transportation Research Part B: Methodological, Elsevier, vol. 197(C).
    16. Yu, Yuewen & Luo, Xia & Su, Qiming & Peng, Weikang, 2023. "A dynamic lane-changing decision and trajectory planning model of autonomous vehicles under mixed autonomous vehicle and human-driven vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    17. Xing, Yang & Lv, Chen & Cao, Dongpu & Lu, Chao, 2020. "Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling," Applied Energy, Elsevier, vol. 261(C).
    18. Pan, Yingjiu & Xi, Yi & Fang, Wenpeng & Liu, Yansen & Zhang, Yali & Zhang, Wenshan, 2025. "An eco-driving strategy for electric buses at signalized intersection with a bus stop based on energy consumption prediction," Energy, Elsevier, vol. 317(C).
    19. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    20. Weihan Chen & Gang Ren & Qi Cao & Jianhua Song & Yikun Liu & Changyin Dong, 2023. "A Game-Theory-Based Approach to Modeling Lane-Changing Interactions on Highway On-Ramps: Considering the Bounded Rationality of Drivers," Mathematics, MDPI, vol. 11(2), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62597-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.