IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61943-3.html
   My bibliography  Save this article

An elite allele TaDT1-AhapI enhances drought tolerance via mediating autophagic pathways in wheat

Author

Listed:
  • Xingbei Liu

    (China Agricultural University)

  • Jinpeng Li

    (China Agricultural University)

  • Chenji Zhang

    (China Agricultural University)

  • Danyang Zhao

    (China Agricultural University)

  • Xiao Peng

    (China Agricultural University)

  • Qun Yang

    (China Agricultural University)

  • Zehui Liu

    (China Agricultural University)

  • Lingfeng Miao

    (China Agricultural University)

  • Wei Chu

    (China Agricultural University)

  • Jingchen Lin

    (China Agricultural University)

  • Shumin Chang

    (China Agricultural University)

  • Debiao Liu

    (China Agricultural University)

  • Xiaoyu Liu

    (China Agricultural University)

  • Wenxi Wang

    (China Agricultural University)

  • Xiaobo Wang

    (China Agricultural University)

  • Mingming Xin

    (China Agricultural University)

  • Yingyin Yao

    (China Agricultural University)

  • Weilong Guo

    (China Agricultural University)

  • Xiaodong Xie

    (Tianjin Agricultural University)

  • Huiru Peng

    (China Agricultural University)

  • Zhongfu Ni

    (China Agricultural University)

  • Qixin Sun

    (China Agricultural University)

  • Zhaorong Hu

    (China Agricultural University)

Abstract

Drought stress constitutes a major threat to global wheat production. Identification of the genetic components underlying drought tolerance in wheat is highly important. Through a genome-wide association study, we identify a natural allele of the zinc finger-type transcription factor TaDT1-A on chromosome 2 A of the wheat genome that confers drought tolerance without imposing trade-offs between tolerance and yield. This allele, named TaDT1-AhapI, causes an 899-bp deletion in the promoter of the TaDT1-A gene, which results in increased expression of the gene through escape of the repressive MYC transcription factor and, consequently, the promotion of stomatal dynamics and water use efficiency via increased autophagy activity. Our findings provide genetic insights into the natural variation in wheat drought tolerance. The identified loci or genes can serve as direct targets for both genetic engineering and selection for wheat trait improvement.

Suggested Citation

  • Xingbei Liu & Jinpeng Li & Chenji Zhang & Danyang Zhao & Xiao Peng & Qun Yang & Zehui Liu & Lingfeng Miao & Wei Chu & Jingchen Lin & Shumin Chang & Debiao Liu & Xiaoyu Liu & Wenxi Wang & Xiaobo Wang &, 2025. "An elite allele TaDT1-AhapI enhances drought tolerance via mediating autophagic pathways in wheat," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61943-3
    DOI: 10.1038/s41467-025-61943-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61943-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61943-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    2. Weilong Guo & Mingming Xin & Zihao Wang & Yingyin Yao & Zhaorong Hu & Wanjun Song & Kuohai Yu & Yongming Chen & Xiaobo Wang & Panfeng Guan & Rudi Appels & Huiru Peng & Zhongfu Ni & Qixin Sun, 2020. "Origin and adaptation to high altitude of Tibetan semi-wild wheat," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Jun Yu & Chengsong Zhu & Wei Xuan & Hongzhou An & Yunlu Tian & Baoxiang Wang & Wenchao Chi & Gaoming Chen & Yuwei Ge & Jin Li & Zhaoyang Dai & Yan Liu & Zhiguang Sun & Dayong Xu & Chunming Wang & Jian, 2023. "Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Rong Zeng & Zhuoyang Li & Yiting Shi & Diyi Fu & Pan Yin & Jinkui Cheng & Caifu Jiang & Shuhua Yang, 2021. "Natural variation in a type-A response regulator confers maize chilling tolerance," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Yibo Cao & Ming Zhang & Xiaoyan Liang & Fenrong Li & Yunlu Shi & Xiaohong Yang & Caifu Jiang, 2020. "Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. Geng Tian & Shubin Wang & Jianhui Wu & Yanxia Wang & Xiutang Wang & Shuwei Liu & Dejun Han & Guangmin Xia & Mengcheng Wang, 2023. "Allelic variation of TaWD40-4B.1 contributes to drought tolerance by modulating catalase activity in wheat," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ci Kong & Yin Yang & Tiancong Qi & Shuyi Zhang, 2025. "Predictive genetic circuit design for phenotype reprogramming in plants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Guga, Suri & Bole, Yi & Riao, Dao & Bilige, Sudu & Wei, Sicheng & Li, Kaiwei & Zhang, Jiquan & Tong, Zhijun & Liu, Xingpeng, 2025. "The challenge of chilling injury amid shifting maize planting boundaries: A case study of Northeast China," Agricultural Systems, Elsevier, vol. 222(C).
    3. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    5. Mingyue Guo & Fengjun Yang & Lijuan Zhu & Leilei Wang & Zhichao Li & Zhenyu Qi & Vasileios Fotopoulos & Jingquan Yu & Jie Zhou, 2024. "Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Yongming Liu & Gengxin Xie & Qichang Yang & Maozhi Ren, 2021. "Biotechnological development of plants for space agriculture," Nature Communications, Nature, vol. 12(1), pages 1-3, December.
    7. Ali, Shahzad & Li, Zongzhen & Zhang, Xia & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "How do novel plant growth regulators and cultivation models strategies affect mechanical strength, lodging resistance and maize productivity in semi-arid regions?," Agricultural Water Management, Elsevier, vol. 295(C).
    8. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    9. Zihao Wang & Wenxi Wang & Xiaoming Xie & Yongfa Wang & Zhengzhao Yang & Huiru Peng & Mingming Xin & Yingyin Yao & Zhaorong Hu & Jie Liu & Zhenqi Su & Chaojie Xie & Baoyun Li & Zhongfu Ni & Qixin Sun &, 2022. "Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Mohamed Mehana & Mohamed Abdelrahman & Yasmin Emadeldin & Jai S. Rohila & Raghupathy Karthikeyan, 2021. "Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    11. Taiyu Chen & Marta Hojka & Philip Davey & Yaqi Sun & Gregory F. Dykes & Fei Zhou & Tracy Lawson & Peter J. Nixon & Yongjun Lin & Lu-Ning Liu, 2023. "Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Gabriela Briceño & Maria Cristina Diez & Graciela Palma & Milko Jorquera & Heidi Schalchli & Juliana María Saez & Claudia Susana Benimeli, 2024. "Neonicotinoid Effects on Soil Microorganisms: Responses and Mitigation Strategies," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    13. Mu, Qing & Xu, Jiatun & Yu, Miao & Guo, Zijian & Dong, Mengqi & Cao, Yuxin & Zhang, Suiqi & Sun, Shikun & Cai, Huanjie, 2022. "Physiological response of winter wheat (Triticum aestivum L.) during vegetative growth to gradual, persistent and intermittent drought," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Yigezu A. Yigezu & Zewdie Bishaw & Abdoul Aziz Niane & Jeffrey Alwang & Tamer El-Shater & Mohamed Boughlala & Aden Aw-Hassan & Wuletaw Tadesse & Filippo M. Bassi & Ahmed Amri & Michael Baum, 2021. "Institutional and farm-level challenges limiting the diffusion of new varieties from public and CGIAR centers: The case of wheat in Morocco," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1359-1377, December.
    15. Mostafa Alamholo & Alireza Tarinejad, 2023. "Molecular mechanism of drought stress tolerance in barley (Hordeum vulgare L.) via a combined analysis of the transcriptome data," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 59(2), pages 76-94.
    16. Edoardo Bertolini & Brian R. Rice & Max Braud & Jiani Yang & Sarah Hake & Josh Strable & Alexander E. Lipka & Andrea L. Eveland, 2025. "Regulatory variation controlling architectural pleiotropy in maize," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    17. Shuyao Li & Wenfu Wu & Yujia Wang & Na Zhang & Fanhui Sun & Feng Jiang & Xiaoshuai Wei, 2023. "Production Data Management of Smart Farming Based on Shili Theory," Agriculture, MDPI, vol. 13(4), pages 1-26, March.
    18. Hong Yu & Jiayang Li, 2022. "Breeding future crops to feed the world through de novo domestication," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    19. Qiao Wen Tan & Peng Ken Lim & Zhong Chen & Asher Pasha & Nicholas Provart & Marius Arend & Zoran Nikoloski & Marek Mutwil, 2023. "Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Matin Qaim, 2020. "Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(2), pages 129-150, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61943-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.