IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61753-7.html
   My bibliography  Save this article

Pathways and selectivity of Fenton degradation of different precursor species of dissolved organic matter

Author

Listed:
  • Qi Chen

    (Tongji University)

  • Fan Lü

    (Tongji University
    Shanghai Institute of Pollution Control and Ecological Security)

  • Junjie Qiu

    (Tongji University)

  • Hua Zhang

    (Tongji University
    Shanghai Institute of Pollution Control and Ecological Security)

  • Pinjing He

    (Tongji University
    Shanghai Institute of Pollution Control and Ecological Security)

Abstract

Fenton has become one of the dominant technologies for the treatment of recalcitrantly degradable wastewater. Fenton reaction inevitably generates massive amounts of secondary dissolved organic matter (DOM). However, the pathways and selectivity of reaction remain unclear when Fenton is applied in a complex environmental system with different DOM molecules. Here, we design five levels of Fenton reactions based on typical precursor monomers of different DOM species and their stable isotope-labeled monomers combined with actual DOM media. The molecular information of the Fenton-derived DOM for all reactions is obtained based on ultra-high resolution mass spectrometry. The exact mass difference calculations demonstrate that Fenton degrades eight DOM precursor species by different pathways. The temporal gradient changes in the co-molecular characteristics of the Fenton-derived DOM between individual monomer reactions and gradient mixed monomer reactions confirm Fenton degradation selectivity toward eight DOM precursor species. These findings may provide a theoretical basis for using the Fenton process in the targeted degradation of organics.

Suggested Citation

  • Qi Chen & Fan Lü & Junjie Qiu & Hua Zhang & Pinjing He, 2025. "Pathways and selectivity of Fenton degradation of different precursor species of dissolved organic matter," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61753-7
    DOI: 10.1038/s41467-025-61753-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61753-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61753-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    2. Siyu Li & Mourad Harir & David Bastviken & Philippe Schmitt-Kopplin & Michael Gonsior & Alex Enrich-Prast & Juliana Valle & Norbert Hertkorn, 2024. "Dearomatization drives complexity generation in freshwater organic matter," Nature, Nature, vol. 628(8009), pages 776-781, April.
    3. Maren Zark & Thorsten Dittmar, 2018. "Universal molecular structures in natural dissolved organic matter," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Liza K. McDonough & Martin S. Andersen & Megan I. Behnke & Helen Rutlidge & Phetdala Oudone & Karina Meredith & Denis M. O’Carroll & Isaac R. Santos & Christopher E. Marjo & Robert G. M. Spencer & Amy, 2022. "A new conceptual framework for the transformation of groundwater dissolved organic matter," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Sophie Lennartz & Harriet A. Byrne & Steffen Kümmel & Martin Krauss & Karolina M. Nowak, 2024. "Hydrogen isotope labeling unravels origin of soil-bound organic contaminant residues in biodegradability testing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Hu & Chuan-Guo Liu & Wen-Kai Zhang & Xue-Wen Liu & Bin Dong & Zhan-Dong Wang & Yuan-Guo Xie & Zheng-Shuang Hua & Xian-Wei Liu, 2025. "Decomposing the molecular complexity and transformation of dissolved organic matter for innovative anaerobic bioprocessing," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Salih Demirkaya & Abdurrahman Ay & Coşkun Gülser & Rıdvan Kızılkaya, 2025. "Enhancing Clay Soil Productivity with Fresh and Aged Biochar: A Two-Year Field Study on Soil Quality and Wheat Yield," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    3. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    4. Hang Guo & Linxian Liao & Junzeng Xu & Wenyi Wang & Peng Chen & Zhihui Min & Yajun Luan & Yu Han & Keke Bao, 2025. "Dual Role of Iron Oxides in Stabilizing Particulate and Mineral-Associated Organic Carbon Under Field Management in Paddies," Agriculture, MDPI, vol. 15(13), pages 1-18, June.
    5. Ninghui Xie & Liangjie Sun & Tong Lu & Xi Zhang & Ning Duan & Wei Wang & Xiaolong Liang & Yuchuan Fan & Huiyu Liu, 2025. "Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon," Agriculture, MDPI, vol. 15(10), pages 1-14, May.
    6. Jie Ma & Dongyan Pei & Xuhan Zhang & Qiuying Lai & Fei He & Chao Fu & Jianhui Liu & Weixin Li, 2022. "The Distribution of DOM in the Wanggang River Flowing into the East China Sea," IJERPH, MDPI, vol. 19(15), pages 1-12, July.
    7. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    8. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    9. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    10. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Yue Zhang & Guihua Liu & Zhixing Ma & Xin Deng & Jiahao Song & Dingde Xu, 2022. "The Influence of Land Attachment on Land Abandonment from the Perspective of Generational Difference: Evidence from Sichuan Province, China," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    12. Marianne V. Asmussen & Rafael Rubilar & Daniel Bozo & Rosa M. Alzamora & Juan Pedro Elissetche & Matías Pincheira & Oscar Jara, 2025. "Relationship Between Carbon Stock and Stand Cumulative Production at Harvesting Age of Pinus radiata Plantations: A Comparison Between Granitic and Metamorphic Soils," Sustainability, MDPI, vol. 17(8), pages 1-15, April.
    13. Simon A. Schroeter & Alice May Orme & Katharina Lehmann & Robert Lehmann & Narendrakumar M. Chaudhari & Kirsten Küsel & He Wang & Anke Hildebrandt & Kai Uwe Totsche & Susan Trumbore & Gerd Gleixner, 2025. "Hydroclimatic extremes threaten groundwater quality and stability," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    14. Duyen Minh Pham & Arata Katayama, 2018. "Humin as an External Electron Mediator for Microbial Pentachlorophenol Dechlorination: Exploration of Redox Active Structures Influenced by Isolation Methods," IJERPH, MDPI, vol. 15(12), pages 1-17, December.
    15. Kristin Piikki & Mats Söderström & Rolf Sommer & Mayesse Da Silva & Sussy Munialo & Wuletawu Abera, 2019. "A Boundary Plane Approach to Map Hotspots for Achievable Soil Carbon Sequestration and Soil Fertility Improvement," Sustainability, MDPI, vol. 11(15), pages 1-17, July.
    16. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    17. Jacek Długosz & Bożena Dębska & Anna Piotrowska-Długosz, 2024. "The Effect of Soil Tillage Systems on the Soil Microbial and Enzymatic Properties Under Soybean ( Glycine max L. Merrill) Cultivation—Implications for Sustainable Soil Management," Sustainability, MDPI, vol. 16(24), pages 1-21, December.
    18. Elsadig Omer & Dora Szlatenyi & Sándor Csenki & Jomana Alrwashdeh & Ivan Czako & Vince Láng, 2024. "Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review," Agriculture, MDPI, vol. 14(12), pages 1-27, November.
    19. Núria Catalán & Carina Rofner & Charles Verpoorter & María Teresa Pérez & Thorsten Dittmar & Lars Tranvik & Ruben Sommaruga & Hannes Peter, 2024. "Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Jinyue Ying & Xi Zhang & Weixiang Wu & Qiong Nan & Guorong Wang & Da Dong, 2024. "The effects of long-term rice straw and biochar return on soil humus composition and structure in paddy soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(12), pages 772-782.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61753-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.