IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61389-7.html
   My bibliography  Save this article

Improving forest ecosystem functions by optimizing tree species spatial arrangement

Author

Listed:
  • Rémy Beugnon

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Universität Leipzig
    IRD)

  • Georg Albert

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    University of Göttingen
    Friedrich Schiller University Jena)

  • Georg Hähn

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Martin Luther University Halle-Wittenberg
    Geological and Environmental Sciences)

  • Wentao Yu

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Friedrich Schiller University Jena)

  • Sylvia Haider

    (Leuphana University of Lüneburg)

  • Stephan Hättenschwiler

    (IRD)

  • Andréa Davrinche

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Martin Luther University Halle-Wittenberg
    University of Helsinki)

  • Benjamin Rosenbaum

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Friedrich Schiller University Jena)

  • Benoit Gauzens

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Friedrich Schiller University Jena)

  • Nico Eisenhauer

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Leipzig University)

Abstract

Reforestation and afforestation programs are promoted as strategies to mitigate rising atmospheric CO2 concentrations and enhance ecosystem services. Planting diverse forests is supposed to foster such benefits, but optimal tree planting techniques, especially regarding species spatial arrangement, are underexplored. Here, using field measurements from the subtropical BEF-China experiment, we simulate tree growth, leaf litterfall, and decomposition, as a function of various spatial arrangements of tree species, from clusters of species to random distributions. Our simulations suggest that increasing tree species spatial heterogeneity in forests composed of eight tree species leads to higher biomass production, more evenly distributed litterfall, increased litter decomposition, and associated nitrogen and carbon cycling. These effects on forest nutrient dynamics are amplified with increasing species richness. Our data show that the spatial arrangement of tree species is a critical component determining biodiversity-ecosystem functioning relationships. Therefore, we suggest the explicit consideration of spatial arrangements when planting trees for reforestation and afforestation projects.

Suggested Citation

  • Rémy Beugnon & Georg Albert & Georg Hähn & Wentao Yu & Sylvia Haider & Stephan Hättenschwiler & Andréa Davrinche & Benjamin Rosenbaum & Benoit Gauzens & Nico Eisenhauer, 2025. "Improving forest ecosystem functions by optimizing tree species spatial arrangement," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61389-7
    DOI: 10.1038/s41467-025-61389-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61389-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61389-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon L. Lewis & Charlotte E. Wheeler & Edward T. A. Mitchard & Alexander Koch, 2019. "Restoring natural forests is the best way to remove atmospheric carbon," Nature, Nature, vol. 568(7750), pages 25-28, April.
    2. I. Tanya Handa & Rien Aerts & Frank Berendse & Matty P. Berg & Andreas Bruder & Olaf Butenschoen & Eric Chauvet & Mark O. Gessner & Jérémy Jabiol & Marika Makkonen & Brendan G. McKie & Björn Malmqvist, 2014. "Consequences of biodiversity loss for litter decomposition across biomes," Nature, Nature, vol. 509(7499), pages 218-221, May.
    3. Andreas Schuldt & Thorsten Assmann & Matteo Brezzi & François Buscot & David Eichenberg & Jessica Gutknecht & Werner Härdtle & Jin-Sheng He & Alexandra-Maria Klein & Peter Kühn & Xiaojuan Liu & Keping, 2018. "Biodiversity across trophic levels drives multifunctionality in highly diverse forests," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Miguel D. Mahecha & Ana Bastos & Friedrich J. Bohn & Nico Eisenhauer & Hannes Feilhauer & Henrik Hartmann & Thomas Hickler & Heike Kalesse-Los & Mirco Migliavacca & Friederike E. L. Otto & Jian Peng &, 2022. "Biodiversity loss and climate extremes — study the feedbacks," Nature, Nature, vol. 612(7938), pages 30-32, December.
    5. Shan Luo & Richard P. Phillips & Insu Jo & Songlin Fei & Jingjing Liang & Bernhard Schmid & Nico Eisenhauer, 2023. "Higher productivity in forests with mixed mycorrhizal strategies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich Scherzinger & Martin Schädler & Thomas Reitz & Rui Yin & Harald Auge & Ines Merbach & Christiane Roscher & W Stanley Harpole & Evgenia Blagodatskaya & Julia Siebert & Marcel Ciobanu & Fabian, 2024. "Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Guoyong Yan & Chunnan Fan & Junqiang Zheng & Guancheng Liu & Jinghua Yu & Zhongling Guo & Wei Cao & Lihua Wang & Wenjie Wang & Qingfan Meng & Junhui Zhang & Yan Li & Jinping Zheng & Xiaoyang Cui & Xia, 2024. "Forest carbon stocks increase with higher dominance of ectomycorrhizal trees in high latitude forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. de Jong, Johan & Poorter, Lourens & de Jong, Wil & Bongers, Frans & Lohbeck, Madelon & Veenendaal, Elmar & Meave, Jorge A. & Jakovac, Catarina C. & Brancalion, Pedro H.S. & Amissah, Lucy & Martínez-Ra, 2025. "Dissecting forest transition: Contribution of mature forests, second-growth forests and tree plantations to tree cover dynamics in the tropics," Land Use Policy, Elsevier, vol. 153(C).
    4. Jean-François Bastin & Nicolas Latte & Jan Bogaert & Claude A. Garcia & Fabio Berzaghi & Fernando T. Maestre & Jens-Christian Svenning & Emeline Assede & Sabas Barima & Timothée Besisa & Samuel Boucho, 2025. "Global alternatives of natural vegetation cover," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Mohammad Sayed Momen Majumdar & Kenichi Matsui, 2025. "Understanding the Contribution of the Green Climate Fund (GCF) in Mangrove Forest Conservation: A Case Study on Sundarbans Mangrove Forest, Bangladesh," Sustainability, MDPI, vol. 17(8), pages 1-15, April.
    6. Guiyao Zhou & Nico Eisenhauer & Zhenggang Du & Manuel Esteban Lucas-Borja & Kaiyan Zhai & Miguel Berdugo & Huimin Duan & Han Wu & Shengen Liu & Daniel Revillini & Tadeo Sáez-Sandino & Hua Chai & Xuhui, 2025. "Fire-driven disruptions of global soil biochemical relationships," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Tiphaine Chevallier & Maud Loireau & Romain Courault & lydie chapuis-lardy & Thierry Desjardins & Cécile Gomez & Alexandre Grondin & Frédéric Guérin & Didier Orange & Raphaël Pélissier & Georges Serpa, 2020. "Paris climate agreement: Promoting interdisciplinary science and stakeholders' approaches for multi-scale implementation of continental carbon sequestration," ULB Institutional Repository 2013/312984, ULB -- Universite Libre de Bruxelles.
    8. Yi Xi & Shushi Peng & Gang Liu & Agnès Ducharne & Philippe Ciais & Catherine Prigent & Xinyu Li & Xutao Tang, 2022. "Trade-off between tree planting and wetland conservation in China," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Rana, Pushpendra & Fleischman, Forrest & Ramprasad, Vijay & Lee, Kangjae, 2022. "Predicting wasteful spending in tree planting programs in Indian Himalaya," World Development, Elsevier, vol. 154(C).
    10. Pavel Tsvetkov & Amina Andreichyk, 2025. "The Analysis of Goals, Results, and Trends in Global Climate Policy Through the Lens of Regulatory Documents and Macroeconomics," Sustainability, MDPI, vol. 17(10), pages 1-37, May.
    11. Angelos Amyntas & Nico Eisenhauer & Stefan Scheu & Bernhard Klarner & Krassimira Ilieva-Makulec & Anna-Maria Madaj & Benoit Gauzens & Jingyi Li & Anton M. Potapov & Benjamin Rosenbaum & Leonardo Bassi, 2024. "Soil community history strengthens belowground multitrophic functioning across plant diversity levels in a grassland experiment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Roy Chowdhury, Pranab K. & Brown, Daniel G., 2023. "Modeling the effects of carbon payments and forest owner cooperatives on carbon storage and revenue in Pacific Northwest forestlands," Land Use Policy, Elsevier, vol. 131(C).
    13. Nekrasov, S., 2023. "Environmental management from the point of energy transition: The example of the Rybinsk reservoir," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 110-126.
    14. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).
    15. Kylie Clay & Lauren Cooper, 2022. "Safeguarding against Harm in a Climate-Smart Forest Economy: Definitions, Challenges, and Solutions," Sustainability, MDPI, vol. 14(7), pages 1-13, April.
    16. Christopher G. Bousfield & Oscar Morton & David B. Lindenmayer & Adam F. A. Pellegrini & Matthew G. Hethcoat & David P. Edwards, 2025. "Global risk of wildfire across timber production systems," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    17. Wojciech Bierza & Gabriela Woźniak & Agnieszka Kompała-Bąba & Franco Magurno & Monika Malicka & Damian Chmura & Agnieszka Błońska & Andrzej M. Jagodziński & Zofia Piotrowska-Seget, 2023. "The Effect of Plant Diversity and Soil Properties on Soil Microbial Biomass and Activity in a Novel Ecosystem," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    18. Suhaib A. Bandh & Fayaz A. Malla & Irteza Qayoom & Haika Mohi-Ud-Din & Aqsa Khursheed Butt & Aashia Altaf & Shahid A. Wani & Richard Betts & Thanh Hai Truong & Nguyen Dang Khoa Pham & Dao Nam Cao & Sh, 2023. "Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    19. Pan, Quan & Wen, Zhi & Wu, Tong & Zheng, Tianchen & Yang, Yanzheng & Li, Ruonan & Zheng, Hua, 2022. "Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review," Ecosystem Services, Elsevier, vol. 58(C).
    20. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61389-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.