IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61158-6.html
   My bibliography  Save this article

Maximal response to a mechanical leader at critical group size in ant collectives

Author

Listed:
  • Atanu Chatterjee

    (Weizmann Institute of Science)

  • Tom Tzook

    (Weizmann Institute of Science)

  • Nir S. Gov

    (Weizmann Institute of Science)

  • Ofer Feinerman

    (Weizmann Institute of Science)

Abstract

It is widely recognized that biological collectives operate near criticality to amplify their capability of collective response. The peak in susceptibility near criticality renders these groups highly responsive to external stimuli. While this phenomenon has been recognized and supported by evidence from theory, a direct experimental demonstration has been elusive. To bridge this gap, here we record the response of a group of Paratrechina longicornis ants to external stimuli as they join efforts to carry food to their nest. Using a robotic system that mimics a transient leader, we apply tactile ant-scale forces and measure the group’s response at sub, near, and supercritical regimes. Supported by theory and simulations, we provide direct experimental evidence to demonstrate that at critical group size, the collective response of the ants to an external force is maximally amplified.

Suggested Citation

  • Atanu Chatterjee & Tom Tzook & Nir S. Gov & Ofer Feinerman, 2025. "Maximal response to a mechanical leader at critical group size in ant collectives," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61158-6
    DOI: 10.1038/s41467-025-61158-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61158-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61158-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arnold J. T. M. Mathijssen & Joshua Culver & M. Saad Bhamla & Manu Prakash, 2019. "Collective intercellular communication through ultra-fast hydrodynamic trigger waves," Nature, Nature, vol. 571(7766), pages 560-564, July.
    2. Jonathan E Ron & Itai Pinkoviezky & Ehud Fonio & Ofer Feinerman & Nir S Gov, 2018. "Bi-stability in cooperative transport by ants in the presence of obstacles," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-21, May.
    3. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    4. Aviram Gelblum & Itai Pinkoviezky & Ehud Fonio & Abhijit Ghosh & Nir Gov & Ofer Feinerman, 2015. "Ant groups optimally amplify the effect of transiently informed individuals," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    5. Pascal P Klamser & Pawel Romanczuk, 2021. "Collective predator evasion: Putting the criticality hypothesis to the test," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    2. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    3. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    4. Maulana, Ardian & Situngkir, Hokky, 2015. "Korelasi Bebas-skala dalam Studi Geo-politik Pemilihan [Scale-free correlation within Geopolitics of Election Studies]," MPRA Paper 66351, University Library of Munich, Germany.
    5. Zhang, Qi & Deng, Ronghao & Ding, Kaixing & Li, Meizhu, 2024. "Structural analysis and the sum of nodes’ betweenness centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    6. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    7. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
    8. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    9. Sahar Gelfman & Quanli Wang & Yi-Fan Lu & Diana Hall & Christopher D Bostick & Ryan Dhindsa & Matt Halvorsen & K Melodi McSweeney & Ellese Cotterill & Tom Edinburgh & Michael A Beaumont & Wayne N Fran, 2018. "meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-20, October.
    10. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    11. Montani, Fernando & Phoka, Elena & Portesi, Mariela & Schultz, Simon R., 2013. "Statistical modelling of higher-order correlations in pools of neural activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3066-3086.
    12. Richard R Stein & Debora S Marks & Chris Sander, 2015. "Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-22, July.
    13. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    14. Gabriel Baglietto & Guido Gigante & Paolo Del Giudice, 2017. "Density-based clustering: A ‘landscape view’ of multi-channel neural data for inference and dynamic complexity analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-25, April.
    15. Porta Mana, PierGianLuca & Rostami, Vahid & Torre, Emiliano & Roudi, Yasser, 2018. "Maximum-entropy and representative samples of neuronal activity: a dilemma," OSF Preprints uz29n, Center for Open Science.
    16. Naoki Masuda & Saiful Islam & Si Thu Aung & Takamitsu Watanabe, 2025. "Energy landscape analysis based on the Ising model: Tutorial review," PLOS Complex Systems, Public Library of Science, vol. 2(5), pages 1-35, May.
    17. Zhang, Qi & Li, Meizhu, 2022. "A betweenness structural entropy of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    19. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    20. Thomas Bury, 2012. "Statistical pairwise interaction model of stock market," Papers 1206.4420, arXiv.org, revised Jan 2014.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61158-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.