Author
Abstract
It is still greatly desirable to activate peroxymonosulfate (PMS) forming nonradicals for the removal of electron-rich contaminants in complex water matrices. However, achieving this on heterogeneous metal-based catalysts with uniform electron distribution remains challenging due to the asymmetric structure of PMS molecules (H-O-O-SO3-). Here, inspired by the dipole effect, we design a Co-doped ZnO catalyst (ZOC) to break charge symmetry at active sites and enhance nonradicals generation. The high charge density at Co sites facilitates two-electron transfer, promoting O-O and O-H bond cleavage to form high-valent cobalt-oxo (CoIV=O), while positively polarized Zn sites drive PMS self-decomposition to generate singlet oxygen (1O2). As a result, the synergistic system of 1O2 and CoIV = O results in a k-value of 73.93 min⁻¹ M⁻¹ for aniline (AN) degradation, 189.6 times higher than ZnO/PMS (ZO/PMS), and also shows a high selectivity for electron-rich new pollutants. The practicality of this outstanding nonradicals system is confirmed by a significant increase in biochemical oxygen demand/chemical oxygen demand (BOD/COD) of the mixed wastewater to over 0.55 in the air-lifting internal circulating reactor. This study offers a structural regulation for controlling catalytic functionality and provides general guidelines for designing Fenton-like reactors to enhance wastewater biodegradability.
Suggested Citation
Zhiyong Zhao & Gaohua Yang & Pengfei Wang & Shuai Yue & Mengxue Yang & Tao Zhang & Sihui Zhan, 2025.
"Regulating nonradicals generation through peroxymonosulfate activation via localized dipole to enhance wastewater biodegradability,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60964-2
DOI: 10.1038/s41467-025-60964-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60964-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.