Author
Listed:
- Minmin Liu
(Fudan University)
- Liting Yang
(Fudan University)
- Zhengchen Wu
(Fudan University)
- Guanyu Chen
(Fudan University)
- Xiangyu Wang
(Fudan University)
- Xiaofen Yang
(Fudan University)
- Guisheng Liang
(Fudan University)
- Renchao Che
(Fudan University)
Abstract
Periodically atomic displacement in two-dimensional (2D) ripple texturing offers a promising route for selective modulation of local potential, crucial for advanced electronic engineering. However, in 2D transition metal carbonitrides (MXenes), the construction and regulation of atomic ripples to control electronic properties meet substantial challenges due to the difficulty in tailoring homogeneous deformation. Here, we propose a competition strategy that leverages configurational entropy and surface termination to controllably modulate the atomic ripple structure within Nb2CTex-based Mxenes. This chemical disorder releases the local in-plane strain induced by termination atoms with large ionic radii, thus enabling the regulation of out-of-plane atomic displacement. The deliberate design of the ripple structure regulates the dielectric relaxation time of the microscopic dipole in the electric field. Consequently, high-entropy MXenes deliver strong intensity of microwave absorption (−41.12 dB) and an absorption bandwidth of nearly 10 GHz, covering the S-, C-, and X-bands. This study establishes the relationship between atomic ripple structure, atomic strain, polarization relaxation, and dielectric properties, providing guidance for designing advanced MXenes materials for various applications.
Suggested Citation
Minmin Liu & Liting Yang & Zhengchen Wu & Guanyu Chen & Xiangyu Wang & Xiaofen Yang & Guisheng Liang & Renchao Che, 2025.
"Entropy-modulated atomic ripple texturing in two-dimensional transition metal carbonitrides,"
Nature Communications, Nature, vol. 16(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60890-3
DOI: 10.1038/s41467-025-60890-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60890-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.