IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923000223.html
   My bibliography  Save this article

Characterization of electrochemical double layer capacitor electrode using self-discharge measurements and modeling

Author

Listed:
  • Kunwar, Ria
  • Pal, Bhupender
  • Izwan Misnon, Izan
  • Daniyal, Hamdan
  • Zabihi, Fatemeh
  • Yang, Shengyuan
  • Sofer, Zděnek
  • Yang, Chun-Chen
  • Jose, Rajan

Abstract

A simple protocol to characterize the electrochemical double layer capacitors (EDLCs) using self-discharge (open circuit discharge) data and a three-branch electrical model is presented. The method relies on recording the self-discharge data of EDLCs and using it to estimate the parametric values of the variables in the model (time constants, maximum voltage, resistances, and capacitances). Porous carbon and metal oxide electrodes in three choice electrolytes are used for the experiments and the simulations are performed using MATLAB Simulink platform. The simulated and experimental self-discharge data are in close agreement for the EDLC storage mode but not for the battery type storage. The results are further validated by simulating the galvanostatic charge discharge (GCD) cycling data and fitting them to the experimental GCD of the assembled devices with high accuracies. The model presented here thus enables determination of charge storage parameters as well as whether a device is capacitive from a single self-discharge data, thereby providing an excellent tool to characterize EDLCs for both academia and industry.

Suggested Citation

  • Kunwar, Ria & Pal, Bhupender & Izwan Misnon, Izan & Daniyal, Hamdan & Zabihi, Fatemeh & Yang, Shengyuan & Sofer, Zděnek & Yang, Chun-Chen & Jose, Rajan, 2023. "Characterization of electrochemical double layer capacitor electrode using self-discharge measurements and modeling," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000223
    DOI: 10.1016/j.apenergy.2023.120658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maria R. Lukatskaya & Sankalp Kota & Zifeng Lin & Meng-Qiang Zhao & Netanel Shpigel & Mikhael D. Levi & Joseph Halim & Pierre-Louis Taberna & Michel W. Barsoum & Patrice Simon & Yury Gogotsi, 2017. "Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides," Nature Energy, Nature, vol. 2(8), pages 1-6, August.
    2. Sang-Eun Chun & Brian Evanko & Xingfeng Wang & David Vonlanthen & Xiulei Ji & Galen D. Stucky & Shannon W. Boettcher, 2015. "Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    3. Pal, Bhupender & Yasin, Amina & Kaur, Rupinder & Tebyetekerwa, Mike & Zabihi, Fatemeh & Yang, Shengyuan & Yang, Chun-Chen & Sofer, Zděnek & Jose, Rajan, 2021. "Understanding electrochemical capacitors with in-situ techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Zineb Cabrane & Soo Hyoung Lee, 2022. "Electrical and Mathematical Modeling of Supercapacitors: Comparison," Energies, MDPI, vol. 15(3), pages 1-12, January.
    5. Alexander C. Forse & John M. Griffin & Céline Merlet & Javier Carretero-Gonzalez & Abdul-Rahman O. Raji & Nicole M. Trease & Clare P. Grey, 2017. "Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy," Nature Energy, Nature, vol. 2(3), pages 1-7, March.
    6. Mingant, R. & Bernard, J. & Sauvant-Moynot, V., 2016. "Novel state-of-health diagnostic method for Li-ion battery in service," Applied Energy, Elsevier, vol. 183(C), pages 390-398.
    7. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pal, Bhupender & Yasin, Amina & Kaur, Rupinder & Tebyetekerwa, Mike & Zabihi, Fatemeh & Yang, Shengyuan & Yang, Chun-Chen & Sofer, Zděnek & Jose, Rajan, 2021. "Understanding electrochemical capacitors with in-situ techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Mehmet C. Yagci & Thomas Feldmann & Elmar Bollin & Michael Schmidt & Wolfgang G. Bessler, 2022. "Aging Characteristics of Stationary Lithium-Ion Battery Systems with Serial and Parallel Cell Configurations," Energies, MDPI, vol. 15(11), pages 1-19, May.
    3. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    4. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Xinchao Lu & Huachao Yang & Zheng Bo & Biyao Gong & Mengyu Cao & Xia Chen & Erka Wu & Jianhua Yan & Kefa Cen & Kostya (Ken) Ostrikov, 2022. "Aligned Ti 3 C 2 T X Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability," Energies, MDPI, vol. 15(3), pages 1-12, February.
    6. He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).
    7. Tang, Hong & Jiang, Mengjin & Ren, Erhui & Zhang, Yue & Lai, Xiaoxu & Cui, Ce & Jiang, Shouxiang & Zhou, Mi & Qin, Qin & Guo, Ronghui, 2020. "Integrate electrical conductivity and Li+ ion mobility into hierarchical heterostructure Ti3C2@CoO/ZnO composites toward high-performance lithium ion storage," Energy, Elsevier, vol. 212(C).
    8. Mailis Lounasvuori & Yangyunli Sun & Tyler S. Mathis & Ljiljana Puskar & Ulrich Schade & De-En Jiang & Yury Gogotsi & Tristan Petit, 2023. "Vibrational signature of hydrated protons confined in MXene interlayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Park, Jae-Do & Roane, Timberley M. & Ren, Zhiyong Jason & Alaraj, Muhannad, 2017. "Dynamic modeling of a microbial fuel cell considering anodic electron flow and electrical charge storage," Applied Energy, Elsevier, vol. 193(C), pages 507-514.
    10. Ke Li & Juan Zhao & Ainur Zhussupbekova & Christopher E. Shuck & Lucia Hughes & Yueyao Dong & Sebastian Barwich & Sebastien Vaesen & Igor V. Shvets & Matthias Möbius & Wolfgang Schmitt & Yury Gogotsi , 2022. "4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Yongjiu Yuan & Xin Li & Lan Jiang & Misheng Liang & Xueqiang Zhang & Shouyu Wu & Junrui Wu & Mengyao Tian & Yang Zhao & Liangti Qu, 2023. "Laser maskless fast patterning for multitype microsupercapacitors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Brindha Ramasubramanian & Rayavarapu Prasada Rao & Vijila Chellappan & Seeram Ramakrishna, 2022. "Towards Sustainable Fuel Cells and Batteries with an AI Perspective," Sustainability, MDPI, vol. 14(23), pages 1-27, November.
    13. Heba Ahmed & Hossein Alijani & Ahmed El-Ghazaly & Joseph Halim & Billy J. Murdoch & Yemima Ehrnst & Emily Massahud & Amgad R. Rezk & Johanna Rosen & Leslie Y. Yeo, 2023. "Recovery of oxidized two-dimensional MXenes through high frequency nanoscale electromechanical vibration," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Shida Jiang & Zhengxiang Song, 2021. "Estimating the State of Health of Lithium-Ion Batteries with a High Discharge Rate through Impedance," Energies, MDPI, vol. 14(16), pages 1-20, August.
    15. Bowen Jia & Yong Guan & Lifeng Wu, 2019. "A State of Health Estimation Framework for Lithium-Ion Batteries Using Transfer Components Analysis," Energies, MDPI, vol. 12(13), pages 1-14, June.
    16. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    17. Tholkappiyan Ramachandran & Abdel-Hamid Ismail Mourad & Mostafa S. A. ElSayed, 2023. "Nb 2 CT x -Based MXenes Most Recent Developments: From Principles to New Applications," Energies, MDPI, vol. 16(8), pages 1-27, April.
    18. Marc Brunet Cabré & Dahnan Spurling & Pietro Martinuz & Mariangela Longhi & Christian Schröder & Hugo Nolan & Valeria Nicolosi & Paula E. Colavita & Kim McKelvey, 2023. "Isolation of pseudocapacitive surface processes at monolayer MXene flakes reveals delocalized charging mechanism," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Changjae Lee & Soon Mo Park & Soobin Kim & Yun-Seok Choi & Geonhyeong Park & Yun Chan Kang & Chong Min Koo & Seon Joon Kim & Dong Ki Yoon, 2022. "Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.