IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35950-1.html
   My bibliography  Save this article

Isolation of pseudocapacitive surface processes at monolayer MXene flakes reveals delocalized charging mechanism

Author

Listed:
  • Marc Brunet Cabré

    (Trinity College Dublin)

  • Dahnan Spurling

    (Trinity College Dublin)

  • Pietro Martinuz

    (Trinity College Dublin
    Università degli Studi di Milano, Dipartimento di Chimica)

  • Mariangela Longhi

    (Università degli Studi di Milano, Dipartimento di Chimica)

  • Christian Schröder

    (Trinity College Dublin)

  • Hugo Nolan

    (Trinity College Dublin)

  • Valeria Nicolosi

    (Trinity College Dublin)

  • Paula E. Colavita

    (Trinity College Dublin)

  • Kim McKelvey

    (Trinity College Dublin
    Victoria University of Wellington)

Abstract

Pseudocapacitive charge storage in Ti3C2Tx MXenes in acid electrolytes is typically described as involving proton intercalation/deintercalation accompanied by redox switching of the Ti centres and protonation/deprotonation of oxygen functional groups. Here we conduct nanoscale electrochemical measurements in a unique experimental configuration, restricting the electrochemical contact area to a small subregion (0.3 µm2) of a monolayer Ti3C2Tx flake. In this unique configuration, proton intercalation into interlayer spaces is not possible, and surface processes are isolated from the bulk processes, characteristic of macroscale electrodes. Analysis of the pseudocapacitive response of differently sized MXene flakes indicates that entire MXene flakes are charged through electrochemical contact of only a small basal plane subregion, corresponding to as little as 3% of the flake surface area. Our observation of pseudocapacitive charging outside the electrochemical contact area is suggestive of a fast transport of protons mechanism across the MXene surface.

Suggested Citation

  • Marc Brunet Cabré & Dahnan Spurling & Pietro Martinuz & Mariangela Longhi & Christian Schröder & Hugo Nolan & Valeria Nicolosi & Paula E. Colavita & Kim McKelvey, 2023. "Isolation of pseudocapacitive surface processes at monolayer MXene flakes reveals delocalized charging mechanism," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35950-1
    DOI: 10.1038/s41467-023-35950-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35950-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35950-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hengxing Ji & Xin Zhao & Zhenhua Qiao & Jeil Jung & Yanwu Zhu & Yalin Lu & Li Li Zhang & Allan H. MacDonald & Rodney S. Ruoff, 2014. "Capacitance of carbon-based electrical double-layer capacitors," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    2. Maria R. Lukatskaya & Sankalp Kota & Zifeng Lin & Meng-Qiang Zhao & Netanel Shpigel & Mikhael D. Levi & Joseph Halim & Pierre-Louis Taberna & Michel W. Barsoum & Patrice Simon & Yury Gogotsi, 2017. "Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides," Nature Energy, Nature, vol. 2(8), pages 1-6, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Hong & Jiang, Mengjin & Ren, Erhui & Zhang, Yue & Lai, Xiaoxu & Cui, Ce & Jiang, Shouxiang & Zhou, Mi & Qin, Qin & Guo, Ronghui, 2020. "Integrate electrical conductivity and Li+ ion mobility into hierarchical heterostructure Ti3C2@CoO/ZnO composites toward high-performance lithium ion storage," Energy, Elsevier, vol. 212(C).
    2. Philip, Abin & Ruban Kumar, A., 2023. "Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Ke Li & Juan Zhao & Ainur Zhussupbekova & Christopher E. Shuck & Lucia Hughes & Yueyao Dong & Sebastian Barwich & Sebastien Vaesen & Igor V. Shvets & Matthias Möbius & Wolfgang Schmitt & Yury Gogotsi , 2022. "4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yongjiu Yuan & Xin Li & Lan Jiang & Misheng Liang & Xueqiang Zhang & Shouyu Wu & Junrui Wu & Mengyao Tian & Yang Zhao & Liangti Qu, 2023. "Laser maskless fast patterning for multitype microsupercapacitors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Tholkappiyan Ramachandran & Abdel-Hamid Ismail Mourad & Mostafa S. A. ElSayed, 2023. "Nb 2 CT x -Based MXenes Most Recent Developments: From Principles to New Applications," Energies, MDPI, vol. 16(8), pages 1-27, April.
    6. Changjae Lee & Soon Mo Park & Soobin Kim & Yun-Seok Choi & Geonhyeong Park & Yun Chan Kang & Chong Min Koo & Seon Joon Kim & Dong Ki Yoon, 2022. "Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yongjiu Lei & Wenli Zhao & Jun Yin & Yinchang Ma & Zhiming Zhao & Jian Yin & Yusuf Khan & Mohamed Nejib Hedhili & Long Chen & Qingxiao Wang & Youyou Yuan & Xixiang Zhang & Osman M. Bakr & Omar F. Moha, 2023. "Discovery of a three-proton insertion mechanism in α-molybdenum trioxide leading to enhanced charge storage capacity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Yannan Lin & Hongxia Zhao & Feng Yu & Jinfeng Yang, 2018. "Design of an Extended Experiment with Electrical Double Layer Capacitors: Electrochemical Energy Storage Devices in Green Chemistry," Sustainability, MDPI, vol. 10(10), pages 1-9, October.
    9. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    10. Xinchao Lu & Huachao Yang & Zheng Bo & Biyao Gong & Mengyu Cao & Xia Chen & Erka Wu & Jianhua Yan & Kefa Cen & Kostya (Ken) Ostrikov, 2022. "Aligned Ti 3 C 2 T X Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability," Energies, MDPI, vol. 15(3), pages 1-12, February.
    11. Mailis Lounasvuori & Yangyunli Sun & Tyler S. Mathis & Ljiljana Puskar & Ulrich Schade & De-En Jiang & Yury Gogotsi & Tristan Petit, 2023. "Vibrational signature of hydrated protons confined in MXene interlayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Balsamo, Flavio & Capasso, Clemente & Lauria, Davide & Veneri, Ottorino, 2020. "Optimal design and energy management of hybrid storage systems for marine propulsion applications," Applied Energy, Elsevier, vol. 278(C).
    13. Heba Ahmed & Hossein Alijani & Ahmed El-Ghazaly & Joseph Halim & Billy J. Murdoch & Yemima Ehrnst & Emily Massahud & Amgad R. Rezk & Johanna Rosen & Leslie Y. Yeo, 2023. "Recovery of oxidized two-dimensional MXenes through high frequency nanoscale electromechanical vibration," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Kunwar, Ria & Pal, Bhupender & Izwan Misnon, Izan & Daniyal, Hamdan & Zabihi, Fatemeh & Yang, Shengyuan & Sofer, Zděnek & Yang, Chun-Chen & Jose, Rajan, 2023. "Characterization of electrochemical double layer capacitor electrode using self-discharge measurements and modeling," Applied Energy, Elsevier, vol. 334(C).
    15. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Zhang, Xiaofang & Xiao, Zongying & Liu, Xufei & Mei, Peng & Yang, Yingkui, 2021. "Redox-active polymers as organic electrode materials for sustainable supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Tao Wang & Runtong Pan & Murillo L. Martins & Jinlei Cui & Zhennan Huang & Bishnu P. Thapaliya & Chi-Linh Do-Thanh & Musen Zhou & Juntian Fan & Zhenzhen Yang & Miaofang Chi & Takeshi Kobayashi & Jianz, 2023. "Machine-learning-assisted material discovery of oxygen-rich highly porous carbon active materials for aqueous supercapacitors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35950-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.