IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60585-9.html
   My bibliography  Save this article

Brain-wide input-output analysis of tuberal nucleus somatostatin neurons reveals hierarchical circuits for orchestrating feeding behavior

Author

Listed:
  • Esra Senol

    (Agency for Science Technology and Research (A*STAR)
    National University of Singapore)

  • Menghan Wang

    (Agency for Science Technology and Research (A*STAR))

  • Yongjuan Xin

    (Agency for Science Technology and Research (A*STAR)
    Zhengzhou University)

  • Zhuolei Jiao

    (Chinese Academy of Sciences)

  • Hasan Mohammad

    (Agency for Science Technology and Research (A*STAR)
    Indian Institute of Science Education and Research)

  • Xin Yi Yeo

    (Agency for Science Technology and Research (A*STAR)
    National University of Singapore)

  • Tengxiao Si

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • David M. Young

    (San Francisco
    Loma Linda University)

  • Hua Huang

    (National University of Singapore)

  • Yingxue Wang

    (Agency for Science Technology and Research (A*STAR))

  • Qin Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Sang Yong Jung

    (Agency for Science Technology and Research (A*STAR)
    National University of Singapore)

  • Xiaohong Xu

    (Fudan University)

  • Pei Zhang

    (Agency for Science Technology and Research (A*STAR)
    Huazhong University of Science and Technology)

  • Yu Fu

    (Agency for Science Technology and Research (A*STAR)
    National University of Singapore
    Nanyang Technological University)

Abstract

Feeding is an innate behavior critical for survival but is also influenced by many non-nutritional factors such as emotion, social context and environmental conditions. Recently, tuberal nucleus somatostatin (TNSST) neurons have been identified as a key feeding regulation node. To gain a deeper understanding of the TNSST neural networks, we quantitatively characterised the brain-wide input-output configuration of mice TNSST neurons using the VITALISTIC method (Viral Tracing Assisted by Light-Sheet microscope and Tissue Clearing) and single-cell projectomes by fluorescence micro-optical sectioning tomography (fMOST). We found that TNSST neurons receive direct inputs from and send outputs to a broad range of brain regions, including many cortical and subcortical areas. Differently from AgRP neurons, the extensively studied ‘hunger’ neurons, TNSST neurons receive more diverse inputs from extra-hypothalamic regions and neuromodulatory centers. Using the projection-specific input tracing, we further revealed fine-tuning of the input-output configuration of TNSST neurons that align with specific functional needs.

Suggested Citation

  • Esra Senol & Menghan Wang & Yongjuan Xin & Zhuolei Jiao & Hasan Mohammad & Xin Yi Yeo & Tengxiao Si & David M. Young & Hua Huang & Yingxue Wang & Qin Li & Sang Yong Jung & Xiaohong Xu & Pei Zhang & Yu, 2025. "Brain-wide input-output analysis of tuberal nucleus somatostatin neurons reveals hierarchical circuits for orchestrating feeding behavior," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60585-9
    DOI: 10.1038/s41467-025-60585-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60585-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60585-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jordi Merino & Hassan S. Dashti & Chloé Sarnowski & Jacqueline M. Lane & Petar V. Todorov & Miriam S. Udler & Yanwei Song & Heming Wang & Jaegil Kim & Chandler Tucker & John Campbell & Toshiko Tanaka , 2022. "Genetic analysis of dietary intake identifies new loci and functional links with metabolic traits," Nature Human Behaviour, Nature, vol. 6(1), pages 155-163, January.
    2. Adam E. Locke & Bratati Kahali & Sonja I. Berndt & Anne E. Justice & Tune H. Pers & Felix R. Day & Corey Powell & Sailaja Vedantam & Martin L. Buchkovich & Jian Yang & Damien C. Croteau-Chonka & Tonu , 2015. "Genetic studies of body mass index yield new insights for obesity biology," Nature, Nature, vol. 518(7538), pages 197-206, February.
    3. Nao Horio & Stephen D. Liberles, 2021. "Hunger enhances food-odour attraction through a neuropeptide Y spotlight," Nature, Nature, vol. 592(7853), pages 262-266, April.
    4. J. Nicholas Betley & Shengjin Xu & Zhen Fang Huang Cao & Rong Gong & Christopher J. Magnus & Yang Yu & Scott M. Sternson, 2015. "Neurons for hunger and thirst transmit a negative-valence teaching signal," Nature, Nature, vol. 521(7551), pages 180-185, May.
    5. Lindsay A. Schwarz & Kazunari Miyamichi & Xiaojing J. Gao & Kevin T. Beier & Brandon Weissbourd & Katherine E. DeLoach & Jing Ren & Sandy Ibanes & Robert C. Malenka & Eric J. Kremer & Liqun Luo, 2015. "Viral-genetic tracing of the input–output organization of a central noradrenaline circuit," Nature, Nature, vol. 524(7563), pages 88-92, August.
    6. Yoav Livneh & Rohan N. Ramesh & Christian R. Burgess & Kirsten M. Levandowski & Joseph C. Madara & Henning Fenselau & Glenn J. Goldey & Veronica E. Diaz & Nick Jikomes & Jon M. Resch & Bradford B. Low, 2017. "Homeostatic circuits selectively gate food cue responses in insular cortex," Nature, Nature, vol. 546(7660), pages 611-616, June.
    7. Dong-Yoon Kim & Gyuryang Heo & Minyoo Kim & Hyunseo Kim & Ju Ae Jin & Hyun-Kyung Kim & Sieun Jung & Myungmo An & Benjamin H. Ahn & Jong Hwi Park & Han-Eol Park & Myungsun Lee & Jung Weon Lee & Gary J., 2020. "A neural circuit mechanism for mechanosensory feedback control of ingestion," Nature, Nature, vol. 580(7803), pages 376-380, April.
    8. Yong Wang & JungMin Kim & Matthew B. Schmit & Tiffany S. Cho & Caohui Fang & Haijiang Cai, 2019. "A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Hee Lee & Yu-Been Kim & Kyu Sik Kim & Mirae Jang & Ha Young Song & Sang-Ho Jung & Dong-Soo Ha & Joon Seok Park & Jaegeon Lee & Kyung Min Kim & Deok-Hyeon Cheon & Inhyeok Baek & Min-Gi Shin & Eun, 2023. "Lateral hypothalamic leptin receptor neurons drive hunger-gated food-seeking and consummatory behaviours in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Anna J. Bowen & Y. Waterlily Huang & Jane Y. Chen & Jordan L. Pauli & Carlos A. Campos & Richard D. Palmiter, 2023. "Topographic representation of current and future threats in the mouse nociceptive amygdala," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Chi Geng & Ruochen Li & Shan Li & Penglai Liu & Yuxin Peng & Changyu Liu & Zhen Wang & Hongxing Zhang & Anan Li, 2025. "Noradrenergic inputs from the locus coeruleus to anterior piriform cortex and the olfactory bulb modulate olfactory outputs," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    4. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    5. Yi Huang & Anyongqi Wang & Wenjiang Zhou & Baoguo Li & Linshan Zhang & Agata M. Rudolf & Zengguang Jin & Catherine Hambly & Guanlin Wang & John R. Speakman, 2024. "Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Qin Wang & Rui-Yue Sun & Jia-Xue Hu & Yan-Hui Sun & Chun-Yue Li & Huiqian Huang & Hao Wang & Xiao-Ming Li, 2024. "Hypothalamic-hindbrain circuit for consumption-induced fear regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Fu-Chao Zhang & Rui-Xia Weng & Di Li & Yong-Chang Li & Xiao-Xuan Dai & Shufen Hu & Qian Sun & Rui Li & Guang-Yin Xu, 2024. "A vagus nerve dominant tetra-synaptic ascending pathway for gastric pain processing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Jie Huang & Jennifer E. Huffman & Yunfeng Huang & Ítalo Valle & Themistocles L. Assimes & Sridharan Raghavan & Benjamin F. Voight & Chang Liu & Albert-László Barabási & Rose D. L. Huang & Qin Hui & Xu, 2022. "Genomics and phenomics of body mass index reveals a complex disease network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Michellee M. Garcia & Amber M. Kline & Koun Onodera & Hiroaki Tsukano & Pranathi R. Dandu & Hailey C. Acosta & Michael R. Kasten & Paul B. Manis & Hiroyuki K. Kato, 2025. "Noncanonical short-latency auditory pathway directly activates deep cortical layers," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    10. Samuel Baker & Pietro Biroli & Hans van Kippersluis & Stephanie von Hinke, 2022. "Beyond Barker: Infant Mortality at Birth and Ischaemic Heart Disease in Older Age," Bristol Economics Discussion Papers 22/765, School of Economics, University of Bristol, UK.
    11. Parsa Akbari & Olukayode A. Sosina & Jonas Bovijn & Karl Landheer & Jonas B. Nielsen & Minhee Kim & Senem Aykul & Tanima De & Mary E. Haas & George Hindy & Nan Lin & Ian R. Dinsmore & Jonathan Z. Luo , 2022. "Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Viinikainen, Jutta & Bryson, Alex & Böckerman, Petri & Kari, Jaana T. & Lehtimäki, Terho & Raitakari, Olli & Viikari, Jorma & Pehkonen, Jaakko, 2022. "Does better education mitigate risky health behavior? A mendelian randomization study," Economics & Human Biology, Elsevier, vol. 46(C).
    13. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Sarah Meulebrouck & Judith Merrheim & Gurvan Queniat & Cyril Bourouh & Mehdi Derhourhi & Mathilde Boissel & Xiaoyan Yi & Alaa Badreddine & Raphaël Boutry & Audrey Leloire & Bénédicte Toussaint & Souhi, 2024. "Functional genetics reveals the contribution of delta opioid receptor to type 2 diabetes and beta-cell function," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Groero, Jaroslav, 2024. "The role of gene–environment interaction in the formation of risk attitudes," Economics & Human Biology, Elsevier, vol. 55(C).
    16. Mateus H. Gouveia & Amy R. Bentley & Thiago P. Leal & Eduardo Tarazona-Santos & Carlos D. Bustamante & Adebowale A. Adeyemo & Charles N. Rotimi & Daniel Shriner, 2023. "Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. In-Jee You & Yeeun Bae & Alec R. Beck & Sora Shin, 2023. "Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    18. Jun Ma & John J. O’Malley & Malaz Kreiker & Yan Leng & Isbah Khan & Morgan Kindel & Mario A. Penzo, 2024. "Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. repec:plo:pone00:0232735 is not listed on IDEAS
    20. Yosuke Yawata & Yu Shikano & Jun Ogasawara & Kenichi Makino & Tetsuhiko Kashima & Keiko Ihara & Airi Yoshimoto & Shota Morikawa & Sho Yagishita & Kenji F. Tanaka & Yuji Ikegaya, 2023. "Mesolimbic dopamine release precedes actively sought aversive stimuli in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    21. Bin Tang & Nan Lin & Junhao Liang & Guorong Yi & Liubin Zhang & Wenjie Peng & Chao Xue & Hui Jiang & Miaoxin Li, 2025. "Leveraging pleiotropic clustering to address high proportion correlated horizontal pleiotropy in Mendelian randomization studies," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60585-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.