IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60558-y.html
   My bibliography  Save this article

Cooperative Jahn-Teller effect and engineered long-range strain in manganese oxide/graphene superlattice for aqueous zinc-ion batteries

Author

Listed:
  • Shijian Wang

    (University of Technology Sydney)

  • Xin Guo

    (University of Technology Sydney
    Shenzhen University of Advanced Technology)

  • Kun Huang

    (The University of Manchester
    The University of Manchester)

  • Amritroop Achari

    (The University of Manchester
    The University of Manchester)

  • Javad Safaei

    (University of Technology Sydney)

  • Yaojie Lei

    (University of Technology Sydney)

  • Dongfang Li

    (University of Technology Sydney)

  • Qinfen Gu

    (Australian Synchrotron)

  • Chenghua Sun

    (Swinburne University of Technology)

  • Lucy Gloag

    (Australian National University)

  • Steven Langford

    (University of Technology Sydney)

  • Andre Geim

    (The University of Manchester
    The University of Manchester)

  • Rahul Raveendran Nair

    (The University of Manchester
    The University of Manchester)

  • Guoxiu Wang

    (University of Technology Sydney
    The University of Manchester
    The University of Manchester)

Abstract

The Jahn-Teller and cooperative Jahn-Teller effects are phenomena that induce asymmetry in individual ions and solid-state lattices and are commonly observed in structures containing specific transition metals, such as copper and manganese. Although the Jahn-Teller effect causes lattice distortions that stress electrode materials in rechargeable batteries, strategically utilising the strain generated by cooperative Jahn-Teller distortions can enhance structural stability. Here we introduce the cooperative Jahn-Teller effect on MnO2 by constructing a two-dimensional superlattice structure with graphene crated in the bulk MnO2/graphene composite material. The strong interaction between MnO2 and graphene increases the concentration of high-spin Mn3+ ions, creating orderly long-range biaxial strains that are compressive in the out-of-plane direction and tensile in the in-plane direction. These strains mitigate Zn2+ intercalation stress and proton corrosion, enabling over 5000 cycles with 165 mAh g−1 capacity retention at 5 C (1 C = 308 mA g−1) in aqueous zinc-ion batteries. Our approach offers an effective strategy to significantly enhance the lifetime of rechargeable batteries by introducing the cooperative Jahn-Teller effect that overcomes the stress of ion insertion in electrode materials.

Suggested Citation

  • Shijian Wang & Xin Guo & Kun Huang & Amritroop Achari & Javad Safaei & Yaojie Lei & Dongfang Li & Qinfen Gu & Chenghua Sun & Lucy Gloag & Steven Langford & Andre Geim & Rahul Raveendran Nair & Guoxiu , 2025. "Cooperative Jahn-Teller effect and engineered long-range strain in manganese oxide/graphene superlattice for aqueous zinc-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60558-y
    DOI: 10.1038/s41467-025-60558-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60558-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60558-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianhang Huang & Zhuo Wang & Mengyan Hou & Xiaoli Dong & Yao Liu & Yonggang Wang & Yongyao Xia, 2018. "Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Peng Gao & Peter Metz & Trevyn Hey & Yuxuan Gong & Dawei Liu & Doreen D. Edwards & Jane Y. Howe & Rong Huang & Scott T. Misture, 2017. "The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    3. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    4. Huilin Pan & Yuyan Shao & Pengfei Yan & Yingwen Cheng & Kee Sung Han & Zimin Nie & Chongmin Wang & Jihui Yang & Xiaolin Li & Priyanka Bhattacharya & Karl T. Mueller & Jun Liu, 2016. "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    5. Liguang Wang & Tongchao Liu & Tianpin Wu & Jun Lu, 2022. "Strain-retardant coherent perovskite phase stabilized Ni-rich cathode," Nature, Nature, vol. 611(7934), pages 61-67, November.
    6. Yongming Sun & Nian Liu & Yi Cui, 2016. "Promises and challenges of nanomaterials for lithium-based rechargeable batteries," Nature Energy, Nature, vol. 1(7), pages 1-12, July.
    7. Pan Xiong & Fan Zhang & Xiuyun Zhang & Shijian Wang & Hao Liu & Bing Sun & Jinqiang Zhang & Yi Sun & Renzhi Ma & Yoshio Bando & Cuifeng Zhou & Zongwen Liu & Takayoshi Sasaki & Guoxiu Wang, 2020. "Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Yuwei Zhao & Yue Lu & Huiping Li & Yongbin Zhu & You Meng & Na Li & Donghong Wang & Feng Jiang & Funian Mo & Changbai Long & Ying Guo & Xinliang Li & Zhaodong Huang & Qing Li & Johnny C. Ho & Jun Fan , 2022. "Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Wenyao Zhang & Muyao Dong & Keren Jiang & Diling Yang & Xuehai Tan & Shengli Zhai & Renfei Feng & Ning Chen & Graham King & Hao Zhang & Hongbo Zeng & Hui Li & Markus Antonietti & Zhi Li, 2022. "Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Runlin Wang & Haozhe Zhang & Qiyu Liu & Fu Liu & Xile Han & Xiaoqing Liu & Kaiwei Li & Gaozhi Xiao & Jacques Albert & Xihong Lu & Tuan Guo, 2022. "Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    10. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    12. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Navaratnarajah Kuganathan & Alexander Chroneos, 2020. "Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al 2 O 3 (C12A7)," Energies, MDPI, vol. 13(7), pages 1-10, March.
    14. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Suresh, C. & Awasthi, Abhishek & Kumar, Binit & Im, Seong-kyun & Jeon, Yongseok, 2025. "Advances in battery thermal management for electric vehicles: A comprehensive review of hybrid PCM-metal foam and immersion cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    16. Jingwei Du & Jiaxu Zhang & Xingyuan Chu & Hao Xu & Yirong Zhao & Markus Löffler & Gang Wang & Dongqi Li & Quanquan Guo & Ahiud Morag & Jie Du & Jianxin Zou & Daria Mikhailova & Vlastimil Mazánek & Zde, 2025. "Six-electron-conversion selenium cathodes stabilized by dead-selenium revitalizer for aqueous zinc batteries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    17. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    18. Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
    19. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Pinelopi Angelopoulou & Spyros Kassavetis & Joan Papavasiliou & Dimitris Karfaridis & Grzegorz Słowik & Panos Patsalas & George Avgouropoulos, 2021. "Enhanced Performance of LiAl 0.1 Mn 1.9 O 4 Cathode for Li-Ion Battery via TiN Coating," Energies, MDPI, vol. 14(4), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60558-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.