Author
Listed:
- Alber Aqil
(State University of New York at Buffalo)
- Yanyan Li
(State University of New York at Buffalo)
- Zhiliang Wang
(State University of New York at Buffalo)
- Saiful Islam
(State University of New York at Buffalo)
- Madison Russell
(State University of New York at Buffalo)
- Theodora Kunovac Kallak
(Uppsala University)
- Marie Saitou
(Norwegian University of Life Sciences)
- Omer Gokcumen
(State University of New York at Buffalo)
- Naoki Masuda
(State University of New York at Buffalo
State University of New York at Buffalo)
Abstract
While switch-like gene expression (“on” in some individuals and “off” in others) has been linked to biological variation and disease susceptibility, a systematic analysis across tissues is lacking. Here, we analyze genomes, transcriptomes, and methylomes from 943 individuals across 27 tissues, identifying 473 switch-like genes. The identified genes are enriched for associations with cancers and immune, metabolic, and skin diseases. Only 40 (8.5%) switch-like genes show genetically controlled switch-like expression in all tissues, i.e., universally switch-like expression. The rest show switch-like expression in specific tissues. Methylation analysis suggests that genetically driven epigenetic silencing explains the universally switch-like pattern, whereas hormone-driven epigenetic modification likely underlies the tissue-specific pattern. Notably, tissue-specific switch-like genes tend to be switched on or off in unison within individuals, driven by tissue-specific master regulators. In the vagina, we identified seven concordantly switched-off genes linked to vaginal atrophy in females. Experimental analysis of vaginal tissues shows that low estrogen levels lead to decreased epithelial thickness and ALOX12 expression. We propose that switched-off driver genes in basal and parabasal epithelia suppress cell proliferation, leading to epithelial thinning and vaginal atrophy. Our findings underscore the implications of switch-like genes for diagnostic and personalized therapeutic applications.
Suggested Citation
Alber Aqil & Yanyan Li & Zhiliang Wang & Saiful Islam & Madison Russell & Theodora Kunovac Kallak & Marie Saitou & Omer Gokcumen & Naoki Masuda, 2025.
"Switch-like gene expression modulates disease risk,"
Nature Communications, Nature, vol. 16(1), pages 1-17, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60513-x
DOI: 10.1038/s41467-025-60513-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60513-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.