Author
Listed:
- Xiaowei Li
(Chinese Academy of Sciences
Chalmers University of Technology)
- Yanyan Wang
(Chinese Academy of Sciences
Chalmers University of Technology)
- Xin Chen
(Chalmers University of Technology)
- Leon Eisentraut
(Chalmers University of Technology)
- Chunjun Zhan
(Chalmers University of Technology)
- Jens Nielsen
(Chalmers University of Technology
BioInnovation Institute)
- Yun Chen
(Chalmers University of Technology
Technical University of Denmark)
Abstract
The tightly regulated central carbon metabolism in Saccharomyces cerevisiae, intricately linked to carbon sources utilized, poses a significant challenge to engineering efforts aimed at increasing the flux through its different pathways. Here, we present a modular deregulation strategy that enables high conversion rates of xylose through the central carbon metabolism. Specifically, employing a multifaceted approach encompassing five different engineering strategies—promoter engineering, transcription factor manipulation, biosensor construction, introduction of heterologous enzymes, and expression of mutant enzymes we engineer different modules of the central carbon metabolism at both the genetic and enzymatic levels. This leads to an enhanced conversion rate of xylose into acetyl-CoA-derived products, with 3-hydroxypropionic acid (3–HP) serving as a representative case in this study. By implementing a combination of these approaches, the developed yeast strain demonstrates a remarkable enhancement in 3–HP productivity, achieving a 4.7–fold increase when compared to our initially optimized 3–HP producing strain grown on xylose as carbon source. These results illustrate that the rational engineering of yeast central metabolism is a viable approach for boosting the metabolic flux towards acetyl–CoA–derived products on a non-glucose carbon source.
Suggested Citation
Xiaowei Li & Yanyan Wang & Xin Chen & Leon Eisentraut & Chunjun Zhan & Jens Nielsen & Yun Chen, 2025.
"Modular deregulation of central carbon metabolism for efficient xylose utilization in Saccharomyces cerevisiae,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59966-x
DOI: 10.1038/s41467-025-59966-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59966-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.