IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57494-2.html
   My bibliography  Save this article

Systematic biotechnological production of isoprenoid analogs with bespoke carbon skeletons

Author

Listed:
  • Lina Wang

    (University of Copenhagen)

  • Mads Rosenfeldt

    (University of Copenhagen)

  • Aikaterini Koutsaviti

    (National and Kapodistrian University of Athens)

  • Maria Harizani

    (National and Kapodistrian University of Athens)

  • Yong Zhao

    (University of Copenhagen)

  • Nattawat Leelahakorn

    (University of Copenhagen)

  • Axelle Frachon

    (EvodiaBio ApS)

  • Morten H. Raadam

    (University of Copenhagen)

  • Karel Miettinen

    (University of Copenhagen)

  • Irini Pateraki

    (University of Copenhagen)

  • Efstathia Ioannou

    (National and Kapodistrian University of Athens)

  • Sotirios C. Kampranis

    (University of Copenhagen)

Abstract

Natural products are widely used as pharmaceuticals, flavors, fragrances, and cosmetic ingredients. Synthesizing and evaluating analogs of natural products can considerably expand their applications. However, the chemical synthesis of analogs of natural products is severely hampered by their highly complex structures. This is particularly evident in isoprenoids, the largest class of natural products. Here, we develop a yeast cell-based biocatalytic method that enables the systematic biotechnological production of analogs of different classes of isoprenoids (including monoterpenoids, sesquiterpenoids, triterpenoids, and cannabinoids) with additional carbons in their skeletons. We demonstrate the applicability of this approach through two proof-of-concept studies: the biosynthesis of the highly valued aroma ingredient ethyllinalool, and the production of cannabinoid analogs with improved cannabinoid receptor agonism. This method is simple, readily adaptable to any cell factory, and enables the tailored expansion of the isoprenoid chemical space to identify molecules with improved properties and the biotechnological production of valuable compounds.

Suggested Citation

  • Lina Wang & Mads Rosenfeldt & Aikaterini Koutsaviti & Maria Harizani & Yong Zhao & Nattawat Leelahakorn & Axelle Frachon & Morten H. Raadam & Karel Miettinen & Irini Pateraki & Efstathia Ioannou & Sot, 2025. "Systematic biotechnological production of isoprenoid analogs with bespoke carbon skeletons," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57494-2
    DOI: 10.1038/s41467-025-57494-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57494-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57494-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. J. Paddon & P. J. Westfall & D. J. Pitera & K. Benjamin & K. Fisher & D. McPhee & M. D. Leavell & A. Tai & A. Main & D. Eng & D. R. Polichuk & K. H. Teoh & D. W. Reed & T. Treynor & J. Lenihan & H., 2013. "High-level semi-synthetic production of the potent antimalarial artemisinin," Nature, Nature, vol. 496(7446), pages 528-532, April.
    2. Adam L. Meadows & Kristy M. Hawkins & Yoseph Tsegaye & Eugene Antipov & Youngnyun Kim & Lauren Raetz & Robert H. Dahl & Anna Tai & Tina Mahatdejkul-Meadows & Lan Xu & Lishan Zhao & Madhukar S. Dasika , 2016. "Rewriting yeast central carbon metabolism for industrial isoprenoid production," Nature, Nature, vol. 537(7622), pages 694-697, September.
    3. Codruta Ignea & Morten H. Raadam & Aikaterini Koutsaviti & Yong Zhao & Yao-Tao Duan & Maria Harizani & Karel Miettinen & Panagiota Georgantea & Mads Rosenfeldt & Sara E. Viejo-Ledesma & Mikael A. Pete, 2022. "Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Karel Miettinen & Nattawat Leelahakorn & Aldo Almeida & Yong Zhao & Lukas R. Hansen & Iben E. Nikolajsen & Jens B. Andersen & Michael Givskov & Dan Staerk & Søren Bak & Sotirios C. Kampranis, 2022. "A GPCR-based yeast biosensor for biomedical, biotechnological, and point-of-use cannabinoid determination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Codruta Ignea & Morten H. Raadam & Mohammed S. Motawia & Antonios M. Makris & Claudia E. Vickers & Sotirios C. Kampranis, 2019. "Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    6. Yasuo Yoshikuni & Thomas E. Ferrin & Jay D. Keasling, 2006. "Designed divergent evolution of enzyme function," Nature, Nature, vol. 440(7087), pages 1078-1082, April.
    7. Jie Zhang & Lea G. Hansen & Olga Gudich & Konrad Viehrig & Lærke M. M. Lassen & Lars Schrübbers & Khem B. Adhikari & Paulina Rubaszka & Elena Carrasquer-Alvarez & Ling Chen & Vasil D’Ambrosio & Beata , 2022. "A microbial supply chain for production of the anti-cancer drug vinblastine," Nature, Nature, vol. 609(7926), pages 341-347, September.
    8. Xiaozhou Luo & Michael A. Reiter & Leo d’Espaux & Jeff Wong & Charles M. Denby & Anna Lechner & Yunfeng Zhang & Adrian T. Grzybowski & Simon Harth & Weiyin Lin & Hyunsu Lee & Changhua Yu & John Shin &, 2019. "Complete biosynthesis of cannabinoids and their unnatural analogues in yeast," Nature, Nature, vol. 567(7746), pages 123-126, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gita Naseri, 2023. "A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jack Chun-Ting Liu & Ricardo De La Peña & Christian Tocol & Elizabeth S. Sattely, 2024. "Reconstitution of early paclitaxel biosynthetic network," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Hugh D. Goold & Heinrich Kroukamp & Paige E. Erpf & Yu Zhao & Philip Kelso & Julie Calame & John J. B. Timmins & Elizabeth L. I. Wightman & Kai Peng & Alexander C. Carpenter & Briardo Llorente & Carme, 2025. "Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Shanshan Zhang & Jiahui Sun & Dandan Feng & Huili Sun & Jinyu Cui & Xuexia Zeng & Yannan Wu & Guodong Luan & Xuefeng Lu, 2023. "Unlocking the potentials of cyanobacterial photosynthesis for directly converting carbon dioxide into glucose," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Shan Yang & Ruibing Chen & Xuan Cao & Guodong Wang & Yongjin J. Zhou, 2024. "De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Codruta Ignea & Morten H. Raadam & Aikaterini Koutsaviti & Yong Zhao & Yao-Tao Duan & Maria Harizani & Karel Miettinen & Panagiota Georgantea & Mads Rosenfeldt & Sara E. Viejo-Ledesma & Mikael A. Pete, 2022. "Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Bingyin Peng & Lygie Esquirol & Zeyu Lu & Qianyi Shen & Li Chen Cheah & Christopher B. Howard & Colin Scott & Matt Trau & Geoff Dumsday & Claudia E. Vickers, 2022. "An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Xixian Chen & Rehka T & Jérémy Esque & Congqiang Zhang & Sudha Shukal & Chin Chin Lim & Leonard Ong & Derek Smith & Isabelle André, 2022. "Total enzymatic synthesis of cis-α-irone from a simple carbon source," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Sierra M. Brooks & Celeste Marsan & Kevin B. Reed & Shuo-Fu Yuan & Dustin-Dat Nguyen & Adit Trivedi & Gokce Altin-Yavuzarslan & Nathan Ballinger & Alshakim Nelson & Hal S. Alper, 2023. "A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Yikui Li & Jie Li & Wei-Kang Chen & Yang Li & Sheng Xu & Linwei Li & Bing Xia & Ren Wang, 2024. "Tuning architectural organization of eukaryotic P450 system to boost bioproduction in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. William M. Shaw & Yunfeng Zhang & Xinyu Lu & Ahmad S. Khalil & Graham Ladds & Xiaozhou Luo & Tom Ellis, 2022. "Screening microbially produced Δ9-tetrahydrocannabinol using a yeast biosensor workflow," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Xixian Chen & Congqiang Zhang & Ruiyang Zou & Kang Zhou & Gregory Stephanopoulos & Heng Phon Too, 2013. "Statistical Experimental Design Guided Optimization of a One-Pot Biphasic Multienzyme Total Synthesis of Amorpha-4,11-diene," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-10, November.
    16. Leixia Chu & Xiaoxia Luo & Taoting Zhu & Yingying Cao & Lili Zhang & Zixin Deng & Jiangtao Gao, 2022. "Harnessing phosphonate antibiotics argolaphos biosynthesis enables a synthetic biology-based green synthesis of glyphosate," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Jun Guo & Di Gao & Jiazhang Lian & Yang Qu, 2024. "De novo biosynthesis of antiarrhythmic alkaloid ajmaline," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Wenna Li & Zhao Zhou & Xianglai Li & Lin Ma & Qingyuan Guan & Guojun Zheng & Hao Liang & Yajun Yan & Xiaolin Shen & Jia Wang & Xinxiao Sun & Qipeng Yuan, 2022. "Biosynthesis of plant hemostatic dencichine in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Abigail E. Bryson & Emily R. Lanier & Kin H. Lau & John P. Hamilton & Brieanne Vaillancourt & Davis Mathieu & Alan E. Yocca & Garret P. Miller & Patrick P. Edger & C. Robin Buell & Björn Hamberger, 2023. "Uncovering a miltiradiene biosynthetic gene cluster in the Lamiaceae reveals a dynamic evolutionary trajectory," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Jianye Xia & Benjamin J. Sánchez & Yu Chen & Kate Campbell & Sergo Kasvandik & Jens Nielsen, 2022. "Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57494-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.