IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32921-w.html
   My bibliography  Save this article

Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks

Author

Listed:
  • Codruta Ignea

    (University of Copenhagen
    McGill University, McConnell Engineering Building)

  • Morten H. Raadam

    (University of Copenhagen)

  • Aikaterini Koutsaviti

    (National and Kapodistrian University of Athens)

  • Yong Zhao

    (University of Copenhagen)

  • Yao-Tao Duan

    (University of Copenhagen)

  • Maria Harizani

    (National and Kapodistrian University of Athens)

  • Karel Miettinen

    (University of Copenhagen)

  • Panagiota Georgantea

    (National and Kapodistrian University of Athens)

  • Mads Rosenfeldt

    (University of Copenhagen)

  • Sara E. Viejo-Ledesma

    (University of Copenhagen)

  • Mikael A. Petersen

    (University of Copenhagen)

  • Wender L. P. Bredie

    (University of Copenhagen)

  • Dan Staerk

    (University of Copenhagen)

  • Vassilios Roussis

    (National and Kapodistrian University of Athens)

  • Efstathia Ioannou

    (National and Kapodistrian University of Athens)

  • Sotirios C. Kampranis

    (University of Copenhagen)

Abstract

Humankind relies on specialized metabolites for medicines, flavors, fragrances, and numerous other valuable biomaterials. However, the chemical space occupied by specialized metabolites, and, thus, their application potential, is limited because their biosynthesis is based on only a handful of building blocks. Engineering organisms to synthesize alternative building blocks will bypass this limitation and enable the sustainable production of molecules with non-canonical chemical structures, expanding the possible applications. Herein, we focus on isoprenoids and combine synthetic biology with protein engineering to construct yeast cells that synthesize 10 non-canonical isoprenoid building blocks with 16 carbon atoms. We identify suitable terpene synthases to convert these building blocks into C16 scaffolds and a cytochrome P450 to decorate the terpene scaffolds and produce different oxygenated compounds. Thus, we reconstruct the modular structure of terpene biosynthesis on 16-carbon backbones, synthesizing 28 different non-canonical terpenes, some of which have interesting odorant properties.

Suggested Citation

  • Codruta Ignea & Morten H. Raadam & Aikaterini Koutsaviti & Yong Zhao & Yao-Tao Duan & Maria Harizani & Karel Miettinen & Panagiota Georgantea & Mads Rosenfeldt & Sara E. Viejo-Ledesma & Mikael A. Pete, 2022. "Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32921-w
    DOI: 10.1038/s41467-022-32921-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32921-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32921-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Codruta Ignea & Morten H. Raadam & Mohammed S. Motawia & Antonios M. Makris & Claudia E. Vickers & Sotirios C. Kampranis, 2019. "Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Yasuo Yoshikuni & Thomas E. Ferrin & Jay D. Keasling, 2006. "Designed divergent evolution of enzyme function," Nature, Nature, vol. 440(7087), pages 1078-1082, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boxue Tian & C Dale Poulter & Matthew P Jacobson, 2016. "Defining the Product Chemical Space of Monoterpenoid Synthases," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-13, August.
    2. Shan Yang & Ruibing Chen & Xuan Cao & Guodong Wang & Yongjin J. Zhou, 2024. "De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Bingyin Peng & Lygie Esquirol & Zeyu Lu & Qianyi Shen & Li Chen Cheah & Christopher B. Howard & Colin Scott & Matt Trau & Geoff Dumsday & Claudia E. Vickers, 2022. "An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Janani Durairaj & Elena Melillo & Harro J Bouwmeester & Jules Beekwilder & Dick de Ridder & Aalt D J van Dijk, 2021. "Integrating structure-based machine learning and co-evolution to investigate specificity in plant sesquiterpene synthases," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32921-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.