IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59127-0.html
   My bibliography  Save this article

Concerted catalysis of single atom and nanocluster enhances bio-ethanol activation and dehydrogenation

Author

Listed:
  • Zhao Sun

    (Central South University
    Cardiff University)

  • Weizhi Shi

    (Central South University)

  • Louise R. Smith

    (Cardiff University)

  • Nicholas F. Dummer

    (Cardiff University)

  • Haifeng Qi

    (Cardiff University)

  • Zhiqiang Sun

    (Central South University)

  • Graham J. Hutchings

    (Cardiff University)

Abstract

Single atom and nanocluster catalysts are extensively investigated in heterogeneous catalysis due to their high catalytic activity and atomic utilization, while their coexisting properties and potentially synergistic effect are yet to be clarified. Herein, we construct three systems of atomic-scale catalysts (xNi/Mo2TiAlC2, x = 0.5, 1, and 1.5) for bio-ethanol reforming, which correspond to single atoms, single atoms mixed with nanoclusters, and nanoclusters. The respective hydrogen utilization efficiency of mixed-form catalyst increases by 43.7% and 29.3% compared to single atom and nanocluster catalysts. Results demonstrate that the adjacent Ni single atom facilitates electron transfer from Mo2TiAlC2 to Ni-Mo interface and raises the d-band center, thus enhancing bio-ethanol adsorption and activation; while the existence of Ni nanoclusters contributes to lowering the energy barriers of CH3CHO* dehydrogenation. The catalytically active sites are Ni-Mo alloyed single atoms with adjacent Ni nanoclusters. This work provides new implications for highly activated catalytic site construction and advanced catalyst design.

Suggested Citation

  • Zhao Sun & Weizhi Shi & Louise R. Smith & Nicholas F. Dummer & Haifeng Qi & Zhiqiang Sun & Graham J. Hutchings, 2025. "Concerted catalysis of single atom and nanocluster enhances bio-ethanol activation and dehydrogenation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59127-0
    DOI: 10.1038/s41467-025-59127-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59127-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59127-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Mohcin Akri & Shu Zhao & Xiaoyu Li & Ketao Zang & Adam F. Lee & Mark A. Isaacs & Wei Xi & Yuvaraj Gangarajula & Jun Luo & Yujing Ren & Yi-Tao Cui & Lei Li & Yang Su & Xiaoli Pan & Wu Wen & Yang Pan & , 2019. "Atomically dispersed nickel as coke-resistant active sites for methane dry reforming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Hongzhou Yang & Lu Shang & Qinghua Zhang & Run Shi & Geoffrey I. N. Waterhouse & Lin Gu & Tierui Zhang, 2019. "A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Ashwani Kumar & Viet Q. Bui & Jinsun Lee & Lingling Wang & Amol R. Jadhav & Xinghui Liu & Xiaodong Shao & Yang Liu & Jianmin Yu & Yosep Hwang & Huong T. D. Bui & Sara Ajmal & Min Gyu Kim & Seong-Gon K, 2021. "Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Brian Pattengale & Yichao Huang & Xingxu Yan & Sizhuo Yang & Sabrina Younan & Wenhui Hu & Zhida Li & Sungsik Lee & Xiaoqing Pan & Jing Gu & Jier Huang, 2020. "Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Wang & Guoqing Cui & Hao Lu & Zeyang Li & Lei Wang & Hao Meng & Jiong Li & Hong Yan & Yusen Yang & Min Wei, 2024. "Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO2−x catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Chen, Wei-Hsin & Calapatia, Andre Marvin A. & Ubando, Aristotle T., 2024. "Design of dual-channel Swiss-roll reactor for high-performance hydrogen production from ethanol steam reforming through waste heat valorization," Energy, Elsevier, vol. 306(C).
    4. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Szostok, Agnieszka & Stanek, Wojciech, 2023. "Thermo-ecological analysis of the power system based on renewable energy sources integrated with energy storage system," Renewable Energy, Elsevier, vol. 216(C).
    6. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Rui Yao & Kaian Sun & Kaiyang Zhang & Yun Wu & Yujie Du & Qiang Zhao & Guang Liu & Chen Chen & Yuhan Sun & Jinping Li, 2024. "Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Qiyou Wang & Kang Liu & Kangman Hu & Chao Cai & Huangjingwei Li & Hongmei Li & Matias Herran & Ying-Rui Lu & Ting-Shan Chan & Chao Ma & Junwei Fu & Shiguo Zhang & Ying Liang & Emiliano Cortés & Min Li, 2022. "Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Li, Sen & Guo, Longhui & He, Xinyu & Qiao, Congzhen & Tian, Yajie, 2022. "Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics," Renewable Energy, Elsevier, vol. 194(C), pages 89-99.
    11. Wang, Zaixing & Lin, Yi & Guo, Yu & Liang, Fengli & He, Zhenzong & Kang, Le & Hu, Jiajun & Mao, Junkui & Li, Molly Meng-Jung, 2025. "Feasibility, environmental, and economic analysis of alternative fuel distributed power systems for reliable off-grid energy supply," Applied Energy, Elsevier, vol. 384(C).
    12. Yue Li & Xingwu Liu & Tong Wu & Xiangzhou Zhang & Hecheng Han & Xiaoyu Liu & Yuke Chen & Zhenfei Tang & Zhen Liu & Yuhai Zhang & Hong Liu & Lili Zhao & Ding Ma & Weijia Zhou, 2024. "Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Zheng Chen & Zhangyun Liu & Xin Xu, 2023. "Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO2 single-atom catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Haifeng Qi & Yueyue Jiao & Jianglin Duan & Nicholas F. Dummer & Bin Zhang & Yujing Ren & Stuart H. Taylor & Yong Qin & Kathrin Junge & Haijun Jiao & Graham J. Hutchings & Matthias Beller, 2025. "Tandem reductive amination and deuteration over a phosphorus-modified iron center," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    17. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Ziliang Yuan & Bo Han & Bing Liu & Jie Sun & Peng Zhou & Rentao Mu & Zehui Zhang, 2025. "Unexpected activity of MgO nanoclusters for the reductive-coupling synthesis of organonitrogen chemicals with C = N bonds," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    20. Jiaqi Yu & Tien Le & Dapeng Jing & Eli Stavitski & Nicholas Hunter & Kanika Lalit & Denis Leshchev & Daniel E. Resasco & Edward H. Sargent & Bin Wang & Wenyu Huang, 2023. "Balancing elementary steps enables coke-free dry reforming of methane," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59127-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.