IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58833-z.html
   My bibliography  Save this article

A conserved fungal effector disturbs Ca2+ sensing and ROS homeostasis to induce plant cell death

Author

Listed:
  • Yunlong Lin

    (Chongqing University
    Zhoukou Normal University)

  • Chan Xu

    (Chongqing University)

  • Lili Li

    (Zhoukou Normal University)

  • Liqin Fan

    (Chongqing University
    Zhoukou Normal University)

  • Rui Li

    (Chongqing University)

  • Jiaxin He

    (Chongqing University)

  • Hongli Li

    (Zhoukou Normal University)

  • Wei Deng

    (Chongqing University)

  • Zhensheng Kang

    (Northwest A&F University)

  • Zhengguo Li

    (Chongqing University)

  • Yulin Cheng

    (Chongqing University)

Abstract

Acting as a major Ca2+ sensor, calmodulin (CaM) activates target proteins to regulate a variety of cellular processes. Here, we report that CaM–target binding is disturbed by a fungal virulence effector PdCDIE1 (Penicillium digitatum Cell Death-Inducing Effector 1), which results into reactive oxygen species (ROS)-dependent plant cell death. PdCDIE1 is an evolutionarily conserved fungal effector that exhibits plant cell death-inducing activity and contributes significantly to pathogen virulence. PdCDIE1 interacts with a plant heat shock protein Hsp70 that is antagonistic to ROS-dependent plant cell death. Hsp70 is a bona fide target of CaM and its CaM-binding domain also interacts with N-terminal PdCDIE1. The interaction between CaM and Hsp70 in citrus fruit is disturbed during pathogen infection but recovered during ΔPdCDIE1 mutant infection. Application of a CaM inhibitor and silencing of CaM genes induce plant cell death and high levels of ROS as PdCDIE1 does. These results reveal a molecular framework of effector-triggered susceptibility which integrates Ca2+ sensing and ROS homeostasis to induce plant cell death.

Suggested Citation

  • Yunlong Lin & Chan Xu & Lili Li & Liqin Fan & Rui Li & Jiaxin He & Hongli Li & Wei Deng & Zhensheng Kang & Zhengguo Li & Yulin Cheng, 2025. "A conserved fungal effector disturbs Ca2+ sensing and ROS homeostasis to induce plant cell death," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58833-z
    DOI: 10.1038/s41467-025-58833-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58833-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58833-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang Tian & Congcong Hou & Zhijie Ren & Chao Wang & Fugeng Zhao & Douglas Dahlbeck & Songping Hu & Liying Zhang & Qi Niu & Legong Li & Brian J. Staskawicz & Sheng Luan, 2019. "A calmodulin-gated calcium channel links pathogen patterns to plant immunity," Nature, Nature, vol. 572(7767), pages 131-135, August.
    2. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    3. Li-Qing Chen & Bi-Huei Hou & Sylvie Lalonde & Hitomi Takanaga & Mara L. Hartung & Xiao-Qing Qu & Woei-Jiun Guo & Jung-Gun Kim & William Underwood & Bhavna Chaudhuri & Diane Chermak & Ginny Antony & Fr, 2010. "Sugar transporters for intercellular exchange and nutrition of pathogens," Nature, Nature, vol. 468(7323), pages 527-532, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiuli Ahmed & Wan Aina Sakeenah Wan Azizan & Farahziatul Roshidah Nazri & Muhammad Asyraf Md Hatta, 2025. "Harnessing CRISPR/Cas9 system to engineer disease resistance in solanaceous crops: Current progress and future prospects," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 52(1), pages 1-14.
    2. Jiaojiao Bai & Yuanyuan Zhou & Jianhang Sun & Kexin Chen & Yufang Han & Ranran Wang & Yanmin Zou & Mingshuo Du & Dongping Lu, 2023. "BIK1 protein homeostasis is maintained by the interplay of different ubiquitin ligases in immune signaling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. repec:caa:jnlhor:v:preprint:id:19-2024-hortsci is not listed on IDEAS
    4. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    5. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    7. Soohyun Oh & Myung-Shin Kim & Hui Jeong Kang & Taewon Kim & Junhyeong Kong & Doil Choi, 2024. "Conserved effector families render Phytophthora species vulnerable to recognition by NLR receptors in nonhost plants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    9. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Seyedeh Najmeh Banihashemian & Seyed Mahyar Mirmajlessi, 2025. "Epigenetic Modifications, Immune Control Processes, and Plant Responses to Nematodes," Agriculture, MDPI, vol. 15(7), pages 1-19, March.
    11. Md Mijanur Rahman Rajib & Kuikui Li & Md Saikat Hossain Bhuiyan & Wenxia Wang & Jin Gao & Heng Yin, 2024. "Konjac Glucomannan Oligosaccharides (KGMOS) Confers Innate Immunity against Phytophthora nicotianae in Tobacco," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
    12. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    13. Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    14. Fabien Lonjon & Yan Lai & Nasrin Askari & Niharikaa Aiyar & Cedoljub Bundalovic-Torma & Bradley Laflamme & Pauline W. Wang & Darrell Desveaux & David S. Guttman, 2024. "The effector-triggered immunity landscape of tomato against Pseudomonas syringae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    16. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    17. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    18. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    19. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    20. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    21. Jianghua Cai & Sayantan Panda & Yana Kazachkova & Eden Amzallag & Zhengguo Li & Sagit Meir & Ilana Rogachev & Asaph Aharoni, 2024. "A NAC triad modulates plant immunity by negatively regulating N-hydroxy pipecolic acid biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58833-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.