IDEAS home Printed from https://ideas.repec.org/a/caa/jnlhor/v52y2025i1id19-2024-hortsci.html
   My bibliography  Save this article

Harnessing CRISPR/Cas9 system to engineer disease resistance in solanaceous crops: Current progress and future prospects

Author

Listed:
  • Shiuli Ahmed

    (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
    Biotechnology Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh)

  • Wan Aina Sakeenah Wan Azizan

    (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia)

  • Farahziatul Roshidah Nazri

    (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia)

  • Muhammad Asyraf Md Hatta

    (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia)

Abstract

Crops belonging to the Solanaceae family, including potato, tomato, pepper, and tobacco possess considerable economic importance worldwide. However, their production is continuously under threat from plant pathogens. Farmers typically rely on resistant cultivars carrying one or several disease resistance (R) genes introduced through conventional breeding. Over time, a competitive host-pathogen coevolution can lead to major resistance breakdown. Genome editing is a significant research tool and avenue for the genetic improvement of crop species, as it enables the precise introduction of targeted genetic changes. This technology has been successfully used in various food crops, including those belonging to the Solanaceae family. The advent of the CRISPR/Cas9 genome editing system allows the rapid knockout of desirable genes. Plant pathogens often exploit host genes known as susceptibility (S) genes to facilitate their proliferation. Inactivation of these S genes may reduce the pathogen's ability to infect plants and confer durable and broad-spectrum resistance. This review provides an overview of the current application of CRISPR/Cas9 to disrupt the S genes for the development of disease-resistant solanaceous crops. The technological limitations and potential strategies for overcoming these challenges are discussed.

Suggested Citation

  • Shiuli Ahmed & Wan Aina Sakeenah Wan Azizan & Farahziatul Roshidah Nazri & Muhammad Asyraf Md Hatta, 2025. "Harnessing CRISPR/Cas9 system to engineer disease resistance in solanaceous crops: Current progress and future prospects," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 52(1), pages 1-14.
  • Handle: RePEc:caa:jnlhor:v:52:y:2025:i:1:id:19-2024-hortsci
    DOI: 10.17221/19/2024-HORTSCI
    as

    Download full text from publisher

    File URL: http://hortsci.agriculturejournals.cz/doi/10.17221/19/2024-HORTSCI.html
    Download Restriction: free of charge

    File URL: http://hortsci.agriculturejournals.cz/doi/10.17221/19/2024-HORTSCI.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/19/2024-HORTSCI?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    2. Fyodor D. Urnov & Jeffrey C. Miller & Ya-Li Lee & Christian M. Beausejour & Jeremy M. Rock & Sheldon Augustus & Andrew C. Jamieson & Matthew H. Porteus & Philip D. Gregory & Michael C. Holmes, 2005. "Highly efficient endogenous human gene correction using designed zinc-finger nucleases," Nature, Nature, vol. 435(7042), pages 646-651, June.
    3. Li-Qing Chen & Bi-Huei Hou & Sylvie Lalonde & Hitomi Takanaga & Mara L. Hartung & Xiao-Qing Qu & Woei-Jiun Guo & Jung-Gun Kim & William Underwood & Bhavna Chaudhuri & Diane Chermak & Ginny Antony & Fr, 2010. "Sugar transporters for intercellular exchange and nutrition of pathogens," Nature, Nature, vol. 468(7323), pages 527-532, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:caa:jnlhor:v:preprint:id:19-2024-hortsci is not listed on IDEAS
    2. Shengping Shang & Yuhan He & Ruihua Zhao & Hanqi Li & Ying Fang & Qianyong Hu & Yujin Fan & Yiwei Wang & Xishi Zhou & Penghao Wang & Xiaoping Xing & Cui-Jun Zhang, 2025. "Fumarylacetoacetate hydrolase targeted by a Fusarium graminearum effector positively regulates wheat FHB resistance," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    3. Yunlong Lin & Chan Xu & Lili Li & Liqin Fan & Rui Li & Jiaxin He & Hongli Li & Wei Deng & Zhensheng Kang & Zhengguo Li & Yulin Cheng, 2025. "A conserved fungal effector disturbs Ca2+ sensing and ROS homeostasis to induce plant cell death," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Zhiqiang Yan & Jin Wang, 2013. "Optimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    5. Sheng Yang & Weiwei Cai & Ruijie Wu & Yu Huang & Qiaoling Lu & Hui Wang & Xueying Huang & Yapeng Zhang & Qing Wu & Xingge Cheng & Meiyun Wan & Jingang Lv & Qian Liu & Xiang Zheng & Shaoliang Mou & Dey, 2023. "Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    7. Md Khaledur Rahman & M Sohel Rahman, 2017. "CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    8. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    9. Jiahui Liu & Xiaoyun Wu & Yue Fang & Ye Liu & Esther Oreofe Bello & Yong Li & Ruyi Xiong & Yinzi Li & Zheng Qing Fu & Aiming Wang & Xiaofei Cheng, 2023. "A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    11. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    12. Norliza Abu-Bakar & Nor Mustaiqazah Juri & Ros Azrinawati Hana Abu-Bakar & Mohd Zulfadli Sohaime & Rafidah Badrun & Johari Sarip & Mohd Azhar Hassan & Khairulmazmi Ahmad, 2021. "Recombinant Protein Foliar Application Activates Systemic Acquired Resistance and Increases Tolerance against Papaya Dieback Disease," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 11(1), pages 1-9, March.
    13. Fanjing Kong & Tianyu Wu & Jingyi Dai & Jie Cai & Zhenwei Zhai & Zhishan Zhu & Ying Xu & Tao Sun, 2024. "Knowledge domains and emerging trends of Genome-wide association studies in Alzheimer’s disease: A bibliometric analysis and visualization study from 2002 to 2022," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-28, January.
    14. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    15. Xin Tong & Jia-Jia Zhao & Ya-Lan Feng & Jing-Ze Zou & Jian Ye & Junfeng Liu & Chenggui Han & Dawei Li & Xian-Bing Wang, 2023. "A selective autophagy receptor VISP1 induces symptom recovery by targeting viral silencing suppressors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    18. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    20. Jincai Qiu & Yongshan Chen & Ying Feng & Xiaofeng Li & Jinghua Xu & Jinping Jiang, 2023. "Adaptation of Rhizosphere Microbial Communities to Continuous Exposure to Multiple Residual Antibiotics in Vegetable Farms," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    21. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlhor:v:52:y:2025:i:1:id:19-2024-hortsci. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.