IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58741-2.html
   My bibliography  Save this article

Self-organizing neuromorphic nanowire networks as stochastic dynamical systems

Author

Listed:
  • Gianluca Milano

    (INRiM (Istituto Nazionale di Ricerca Metrologica))

  • Fabio Michieletti

    (C.so Duca degli Abruzzi 24)

  • Davide Pilati

    (INRiM (Istituto Nazionale di Ricerca Metrologica)
    C.so Duca degli Abruzzi 24)

  • Carlo Ricciardi

    (C.so Duca degli Abruzzi 24)

  • Enrique Miranda

    (Universitat Autònoma de Barcelona (UAB))

Abstract

Neuromorphic computing aims to develop hardware platforms that emulate the effectiveness of our brain. In this context, brain-inspired self-organizing memristive networks have been demonstrated as promising physical substrates for in materia computing. However, understanding the connection between network dynamics and information processing capabilities in these systems still represents a challenge. In this work, we show that neuromorphic nanowire network behavior can be modeled as an Ornstein-Uhlenbeck process which holistically combines stimuli-dependent deterministic trajectories and stochastic effects. This unified modeling framework, able to describe main features of network dynamics including noise and jumps, enables the investigation and quantification of the roles played by deterministic and stochastic dynamics on computing capabilities of the system in the context of physical reservoir computing. These results pave the way for the development of physical computing paradigms exploiting deterministic and stochastic dynamics in the same hardware platform in a similar way to what our brain does.

Suggested Citation

  • Gianluca Milano & Fabio Michieletti & Davide Pilati & Carlo Ricciardi & Enrique Miranda, 2025. "Self-organizing neuromorphic nanowire networks as stochastic dynamical systems," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58741-2
    DOI: 10.1038/s41467-025-58741-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58741-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58741-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Jens Wilting & Viola Priesemann, 2018. "Inferring collective dynamical states from widely unobserved systems," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Gianluca Milano & Michael Luebben & Zheng Ma & Rafal Dunin-Borkowski & Luca Boarino & Candido F. Pirri & Rainer Waser & Carlo Ricciardi & Ilia Valov, 2018. "Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Wei Wang & Ming Wang & Elia Ambrosi & Alessandro Bricalli & Mario Laudato & Zhong Sun & Xiaodong Chen & Daniele Ielmini, 2019. "Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. L. Appeltant & M.C. Soriano & G. Van der Sande & J. Danckaert & S. Massar & J. Dambre & B. Schrauwen & C.R. Mirasso & I. Fischer, 2011. "Information processing using a single dynamical node as complex system," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    6. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    7. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    8. C. Kaspar & B. J. Ravoo & W. G. Wiel & S. V. Wegner & W. H. P. Pernice, 2021. "The rise of intelligent matter," Nature, Nature, vol. 594(7863), pages 345-355, June.
    9. A. Mehonic & A. J. Kenyon, 2022. "Brain-inspired computing needs a master plan," Nature, Nature, vol. 604(7905), pages 255-260, April.
    10. Hugh G. Manning & Fabio Niosi & Claudia Gomes Rocha & Allen T. Bellew & Colin O’Callaghan & Subhajit Biswas & Patrick F. Flowers & Benjamin J. Wiley & Justin D. Holmes & Mauro S. Ferreira & John J. Bo, 2018. "Emergence of winner-takes-all connectivity paths in random nanowire networks," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    11. Gianluca Milano & Alessandro Cultrera & Luca Boarino & Luca Callegaro & Carlo Ricciardi, 2023. "Tomography of memory engrams in self-organizing nanowire connectomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Hirofumi Tanaka & Megumi Akai-Kasaya & Amin TermehYousefi & Liu Hong & Lingxiang Fu & Hakaru Tamukoh & Daisuke Tanaka & Tetsuya Asai & Takuji Ogawa, 2018. "A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    14. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Author Correction: Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    2. Ben S. Bernanke & Vincent R. Reinhart & Brian P. Sack, 2004. "Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 35(2), pages 1-100.
    3. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    4. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    5. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    6. Gonçalo Jacinto & Patrícia A. Filipe & Carlos A. Braumann, 2022. "Profit Optimization of Cattle Growth with Variable Prices," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1917-1952, September.
    7. Olivier Le Courtois, 2022. "On the Diversification of Fixed Income Assets," Risks, MDPI, vol. 10(2), pages 1-21, February.
    8. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    9. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    10. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    11. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    12. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    13. Jorge Miguel Bravo, 2019. "Funding for longer lives. Retirement wallet and risk-sharing annuities," EKONOMIAZ. Revista vasca de Economía, Gobierno Vasco / Eusko Jaurlaritza / Basque Government, vol. 96(02), pages 268-291.
    14. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    15. Ilias Lekkos, 2003. "Cross‐sectional Restrictions on the Spot and Forward Term Structures of Interest Rates and Panel Unit Root Tests," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 30(5‐6), pages 799-828, June.
    16. Chang Shih-Chieh Bill & Lee Yen-Kuan, 2020. "Currency Uncertainty, Interest Guarantee, and Risk-Based Premiums in Life Insurance Guaranty Schemes," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 14(2), pages 1-30, July.
    17. Qian Li & Ting Tan & Benlong Wang & Zhimiao Yan, 2024. "Avian-inspired embodied perception in biohybrid flapping-wing robotics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Piotr Komański & Oskar Sokoliński, 2015. "Least-Squares Monte Carlo Simulation for Time Value of Options and Guarantees Calculation," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 41.
    19. Sascha Meyer & Willi Schwarz, 2003. "A PDE based Implementation of the Hull&White Model for Cashflow Derivatives," Computational Statistics, Springer, vol. 18(3), pages 417-434, September.
    20. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58741-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.