IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58604-w.html
   My bibliography  Save this article

MRI signatures of cortical microstructure in human development align with oligodendrocyte cell-type expression

Author

Listed:
  • Sila Genc

    (Cardiff University
    Murdoch Children’s Research Institute
    The Royal Children’s Hospital)

  • Gareth Ball

    (Murdoch Children’s Research Institute
    University of Melbourne)

  • Maxime Chamberland

    (Cardiff University
    Eindhoven University of Technology)

  • Erika P. Raven

    (Cardiff University
    NYU Grossman School of Medicine
    NYU Grossman School of Medicine)

  • Chantal M. W. Tax

    (Cardiff University
    University Medical Center Utrecht)

  • Isobel Ward

    (Cardiff University
    Bristol Medical School, University of Bristol)

  • Joseph Y. M. Yang

    (Murdoch Children’s Research Institute
    The Royal Children’s Hospital
    University of Melbourne
    Murdoch Children’s Research Institute)

  • Marco Palombo

    (Cardiff University
    Cardiff University)

  • Derek K. Jones

    (Cardiff University)

Abstract

Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss. Recent advances in MRI hardware and biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. Using ultra-strong gradient MRI, this study quantifies cortical neurite and soma microstructure in typically developing youth. Across domain-specific networks, cortical neurite signal fraction, attributed to neuronal and glial processes, increases with age. The apparent soma radius, attributed to the apparent radius of glial and neuronal cell bodies, decreases with age. Analyses of two independent post-mortem datasets reveal that genes increasing in expression through adolescence are significantly enriched in cortical oligodendrocytes and Layer 5–6 neurons. In our study, we show spatial and temporal alignment of oligodendrocyte cell-type gene expression with neurite and soma microstructural changes, suggesting that ongoing cortical myelination processes drive adolescent cortical development.

Suggested Citation

  • Sila Genc & Gareth Ball & Maxime Chamberland & Erika P. Raven & Chantal M. W. Tax & Isobel Ward & Joseph Y. M. Yang & Marco Palombo & Derek K. Jones, 2025. "MRI signatures of cortical microstructure in human development align with oligodendrocyte cell-type expression," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58604-w
    DOI: 10.1038/s41467-025-58604-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58604-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58604-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    2. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    3. Carlo Colantuoni & Barbara K. Lipska & Tianzhang Ye & Thomas M. Hyde & Ran Tao & Jeffrey T. Leek & Elizabeth A. Colantuoni & Abdel G. Elkahloun & Mary M. Herman & Daniel R. Weinberger & Joel E. Kleinm, 2011. "Temporal dynamics and genetic control of transcription in the human prefrontal cortex," Nature, Nature, vol. 478(7370), pages 519-523, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Audrey C. Luo & Valerie J. Sydnor & Adam Pines & Bart Larsen & Aaron F. Alexander-Bloch & Matthew Cieslak & Sydney Covitz & Andrew A. Chen & Nathalia Bianchini Esper & Eric Feczko & Alexandre R. Franc, 2024. "Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    3. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    4. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    6. Federico Ferraccioli & Laura M. Sangalli & Livio Finos, 2023. "Nonparametric tests for semiparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1106-1130, September.
    7. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    8. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    9. Daniel Strömbom & Autumn Sands & Jason M Graham & Amanda Crocker & Cameron Cloud & Grace Tulevech & Kelly Ward, 2024. "Modeling human activity-related spread of the spotted lanternfly (Lycorma delicatula) in the US," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-15, August.
    10. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    11. Paolo Veneri, 2018. "Urban spatial structure in OECD cities: Is urban population decentralising or clustering?," Papers in Regional Science, Wiley Blackwell, vol. 97(4), pages 1355-1374, November.
    12. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Schwemmer, Philipp & Güpner, Franziska & Adler, Sven & Klingbeil, Knut & Garthe, Stefan, 2016. "Modelling small-scale foraging habitat use in breeding Eurasian oystercatchers (Haematopus ostralegus) in relation to prey distribution and environmental predictors," Ecological Modelling, Elsevier, vol. 320(C), pages 322-333.
    14. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    15. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    16. Damien Rousselière, 2019. "A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 829-855, December.
    17. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Haewon Nam & Chongwon Pae & Jinseok Eo & Maeng-Keun Oh & Hae-Jeong Park, 2021. "Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    19. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    20. Jessica Dafflon & Pedro F. Da Costa & František Váša & Ricardo Pio Monti & Danilo Bzdok & Peter J. Hellyer & Federico Turkheimer & Jonathan Smallwood & Emily Jones & Robert Leech, 2022. "A guided multiverse study of neuroimaging analyses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58604-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.