IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58192-9.html
   My bibliography  Save this article

Data-driven energy management for electric vehicles using offline reinforcement learning

Author

Listed:
  • Yong Wang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Jingda Wu

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Hongwen He

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Zhongbao Wei

    (Beijing Institute of Technology)

  • Fengchun Sun

    (Beijing Institute of Technology)

Abstract

Energy management technologies have significant potential to optimize electric vehicle performance and support global energy sustainability. However, despite extensive research, their real-world application remains limited due to reliance on simulations, which often fail to bridge the gap between theory and practice. This study introduces a real-world data-driven energy management framework based on offline reinforcement learning. By leveraging electric vehicle operation data, the proposed approach eliminates the need for manually designed rules or reliance on high-fidelity simulations. It integrates seamlessly into existing frameworks, enhancing performance after deployment. The method is tested on fuel cell electric vehicles, optimizing energy consumption and reducing system degradation. Real-world data from an electric vehicle monitoring system in China validate its effectiveness. The results demonstrate that the proposed method consistently achieves superior performance under diverse conditions. Notably, with increasing data availability, performance improves significantly, from 88% to 98.6% of the theoretical optimum after two updates. Training on over 60 million kilometers of data enables the learning agent to generalize across previously unseen and corner-case scenarios. These findings highlight the potential of data-driven methods to enhance energy efficiency and vehicle longevity through large-scale vehicle data utilization.

Suggested Citation

  • Yong Wang & Jingda Wu & Hongwen He & Zhongbao Wei & Fengchun Sun, 2025. "Data-driven energy management for electric vehicles using offline reinforcement learning," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58192-9
    DOI: 10.1038/s41467-025-58192-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58192-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58192-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuo Feng & Haowei Sun & Xintao Yan & Haojie Zhu & Zhengxia Zou & Shengyin Shen & Henry X. Liu, 2023. "Dense reinforcement learning for safety validation of autonomous vehicles," Nature, Nature, vol. 615(7953), pages 620-627, March.
    2. Jiahuan Lu & Rui Xiong & Jinpeng Tian & Chenxu Wang & Fengchun Sun, 2023. "Deep learning to estimate lithium-ion battery state of health without additional degradation experiments," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    4. Ganesh, Akhil Hannegudda & Xu, Bin, 2022. "A review of reinforcement learning based energy management systems for electrified powertrains: Progress, challenge, and potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).
    6. Zhang, Fengqi & Xiao, Lehua & Coskun, Serdar & Pang, Hui & Xie, Shaobo & Liu, Kailong & Cui, Yahui, 2023. "Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing," Energy, Elsevier, vol. 264(C).
    7. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Fanyuan Deng & Zhaofeng Lv & Lijuan Qi & Xiaotong Wang & Mengshuang Shi & Huan Liu, 2020. "A big data approach to improving the vehicle emission inventory in China," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    9. Jingzhao Zhang & Yanan Wang & Benben Jiang & Haowei He & Shaobo Huang & Chen Wang & Yang Zhang & Xuebing Han & Dongxu Guo & Guannan He & Minggao Ouyang, 2023. "Realistic fault detection of li-ion battery via dynamical deep learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guan, Kaifu & Huang, Zhiwu & Gao, Yang & Wu, Yue & Li, Fei & Li, Heng, 2025. "Towards adaptive deep reinforcement learning energy management for electric vehicles: An online updating approach," Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    2. Liu, Donglei & Wang, Shunli & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2024. "An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures," Energy, Elsevier, vol. 304(C).
    3. Hongao Liu & Chang Li & Xiaosong Hu & Jinwen Li & Kai Zhang & Yang Xie & Ranglei Wu & Ziyou Song, 2025. "Multi-modal framework for battery state of health evaluation using open-source electric vehicle data," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Hu, Dong & Huang, Chao & Wu, Jingda & Wei, Henglai & Pi, Dawei, 2025. "Enhancing data-driven energy management strategy via digital expert guidance for electrified vehicles," Applied Energy, Elsevier, vol. 381(C).
    5. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    6. Zhang, Zhen & Zhu, Yuhao & Gong, Yichang & Wang, Teng & Cui, Naxin & Shang, Yunlong, 2025. "Insight into the whole from the part: Redefined state of health for lithium-ion batteries based on optimal charging fragment search," Energy, Elsevier, vol. 320(C).
    7. Feng, Xinhong & Zhang, Yongzhi & Xiong, Rui & Wang, Chun, 2024. "Comprehensive performance comparison among different types of features in data-driven battery state of health estimation," Applied Energy, Elsevier, vol. 369(C).
    8. Tang, Aihua & Xu, Yuchen & Tian, Jinpeng & Zou, Hang & Liu, Kailong & Yu, Quanqing, 2025. "Adaptive engineering-assisted deep learning for battery module health monitoring across dynamic operations," Energy, Elsevier, vol. 322(C).
    9. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    10. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    11. Liu, Ruixue & Jiang, Benben, 2025. "A multi-time-resolution attention-based interaction network for co-estimation of multiple battery states," Applied Energy, Elsevier, vol. 381(C).
    12. Tang, Wenbin & Jiao, Xiaohong & Zhang, Yahui, 2025. "Hierarchical energy management control for connected hybrid electric vehicles in uncertain traffic scenarios," Energy, Elsevier, vol. 315(C).
    13. Tang, Wenbin & Wang, Yaqian & Jiao, Xiaohong & Ren, Lina, 2023. "Hierarchical energy management strategy based on adaptive dynamic programming for hybrid electric vehicles in car-following scenarios," Energy, Elsevier, vol. 265(C).
    14. Yifan, Zheng & Sida, Zhou & Zhengjie, Zhang & Xinan, Zhou & Rui, Cao & Qiangwei, Li & Zichao, Gao & Chengcheng, Fan & Shichun, Yang, 2024. "A capacity fade reliability model for lithium-ion battery packs based on real-vehicle data," Energy, Elsevier, vol. 307(C).
    15. Tian, Weiyong & Liu, Li & Zhang, Xiaohui & Shao, Jiaqi, 2024. "Flight trajectory and energy management coupled optimization for hybrid electric UAVs with adaptive sequential convex programming method," Applied Energy, Elsevier, vol. 364(C).
    16. Jiang, Kangrui & Tian, Zhongbei & Wen, Tao & Song, Kejian & Hillmansen, Stuart & Ochieng, Washington Yotto, 2025. "Collaborative optimization strategy of hydrogen fuel cell train energy and thermal management system based on deep reinforcement learning," Applied Energy, Elsevier, vol. 393(C).
    17. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Li, Cheng & Xu, Xiangyang & Zhu, Helong & Gan, Jiongpeng & Chen, Zhige & Tang, Xiaolin, 2024. "Research on car-following control and energy management strategy of hybrid electric vehicles in connected scene," Energy, Elsevier, vol. 293(C).
    19. Zou, Yunge & Yang, Yalian & Zhang, Yuxin & Liu, Changdong, 2024. "Computationally efficient assessment of fuel economy of multi-modes and multi-gears hybrid electric vehicles: A hyper rapid dynamic programming approach," Energy, Elsevier, vol. 313(C).
    20. Hua, Min & Zhang, Cetengfei & Zhang, Fanggang & Li, Zhi & Yu, Xiaoli & Xu, Hongming & Zhou, Quan, 2023. "Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 348(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58192-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.