IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58139-0.html
   My bibliography  Save this article

AI-driven high-throughput droplet screening of cell-free gene expression

Author

Listed:
  • Jiawei Zhu

    (ShanghaiTech University)

  • Yaru Meng

    (ShanghaiTech University)

  • Wenli Gao

    (ShanghaiTech University)

  • Shuo Yang

    (ShanghaiTech University)

  • Wenjie Zhu

    (ShanghaiTech University)

  • Xiangyang Ji

    (ShanghaiTech University)

  • Xuanpei Zhai

    (ShanghaiTech University)

  • Wan-Qiu Liu

    (ShanghaiTech University)

  • Yuan Luo

    (Chinese Academy of Sciences)

  • Shengjie Ling

    (ShanghaiTech University
    ShanghaiTech University
    Shanghai Clinical Research and Trial Center
    Fudan University)

  • Jian Li

    (ShanghaiTech University
    ShanghaiTech University
    Shanghai Clinical Research and Trial Center)

  • Yifan Liu

    (ShanghaiTech University
    ShanghaiTech University
    Shanghai Clinical Research and Trial Center)

Abstract

Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.

Suggested Citation

  • Jiawei Zhu & Yaru Meng & Wenli Gao & Shuo Yang & Wenjie Zhu & Xiangyang Ji & Xuanpei Zhai & Wan-Qiu Liu & Yuan Luo & Shengjie Ling & Jian Li & Yifan Liu, 2025. "AI-driven high-throughput droplet screening of cell-free gene expression," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58139-0
    DOI: 10.1038/s41467-025-58139-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58139-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58139-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin J. Shields & Jason Stevens & Jun Li & Marvin Parasram & Farhan Damani & Jesus I. Martinez Alvarado & Jacob M. Janey & Ryan P. Adams & Abigail G. Doyle, 2021. "Bayesian reaction optimization as a tool for chemical synthesis," Nature, Nature, vol. 590(7844), pages 89-96, February.
    2. Christina V. Theodoris & Ling Xiao & Anant Chopra & Mark D. Chaffin & Zeina R. Al Sayed & Matthew C. Hill & Helene Mantineo & Elizabeth M. Brydon & Zexian Zeng & X. Shirley Liu & Patrick T. Ellinor, 2023. "Transfer learning enables predictions in network biology," Nature, Nature, vol. 618(7965), pages 616-624, June.
    3. Wan-Qiu Liu & Xiangyang Ji & Fang Ba & Yufei Zhang & Huiling Xu & Shuhui Huang & Xiao Zheng & Yifan Liu & Shengjie Ling & Michael C. Jewett & Jian Li, 2024. "Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yi-Jia Huang & Chun-houh Chen & Hsin-Chou Yang, 2024. "AI-enhanced integration of genetic and medical imaging data for risk assessment of Type 2 diabetes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Patricia Jaaks & Elizabeth A. Coker & Daniel J. Vis & Olivia Edwards & Emma F. Carpenter & Simonetta M. Leto & Lisa Dwane & Francesco Sassi & Howard Lightfoot & Syd Barthorpe & Dieudonne Meer & Wanjua, 2022. "Effective drug combinations in breast, colon and pancreatic cancer cells," Nature, Nature, vol. 603(7899), pages 166-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Fischer & David S. Fischer & Roman Mukhin & Andrey Isaev & Evan Biederstedt & Alexandra-Chloé Villani & Fabian J. Theis, 2024. "scTab: Scaling cross-tissue single-cell annotation models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Christopher Tosh & Mauricio Tec & Jessica B. White & Jeffrey F. Quinn & Glorymar Ibanez Sanchez & Paul Calder & Andrew L. Kung & Filemon S. Dela Cruz & Wesley Tansey, 2025. "A Bayesian active learning platform for scalable combination drug screens," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    3. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Hao Li & Zebei Han & Yu Sun & Fu Wang & Pengzhen Hu & Yuang Gao & Xuemei Bai & Shiyu Peng & Chao Ren & Xiang Xu & Zeyu Liu & Hebing Chen & Yang Yang & Xiaochen Bo, 2024. "CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Ana Laura Dias & Latimah Bustillo & Tiago Rodrigues, 2023. "Limitations of representation learning in small molecule property prediction," Nature Communications, Nature, vol. 14(1), pages 1-2, December.
    9. Zhenxing Wang & Yunjun Yu & Kallol Roy & Cheng Gao & Lei Huang, 2023. "The Application of Machine Learning: Controlling the Preparation of Environmental Materials and Carbon Neutrality," IJERPH, MDPI, vol. 20(3), pages 1-4, January.
    10. Manu Suvarna & Tangsheng Zou & Sok Ho Chong & Yuzhen Ge & Antonio J. Martín & Javier Pérez-Ramírez, 2024. "Active learning streamlines development of high performance catalysts for higher alcohol synthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Jun-Lin Yu & Cong Zhou & Xiang-Li Ning & Jun Mou & Fan-Bo Meng & Jing-Wei Wu & Yi-Ting Chen & Biao-Dan Tang & Xiang-Gen Liu & Guo-Bo Li, 2025. "Knowledge-guided diffusion model for 3D ligand-pharmacophore mapping," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    12. Chen, Tiansheng & Kang, Yanjie & Yan, Pengbo & Yuan, Yuan & Feng, Haoyang & Wang, Junhao & Zhai, Houzhong & Zha, Yuting & Zhou, Yuan & Tian, Gengyuan & Wang, Yangle, 2024. "Supercritical carbon dioxide critical flow model based on a physics-informed neural network," Energy, Elsevier, vol. 313(C).
    13. Babak Masoudi, 2024. "An optimized dual attention-based network for brain tumor classification," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(7), pages 2868-2879, July.
    14. Ka Lu & Pan-Pan Zhou & Yong-Qiang Tu & Fu-Min Zhang & Xiao-Ming Zhang & Kai Li & Kun Fang & Yun-Peng Wang & Zi-Hao Li & Jia-Qi Li, 2025. "In-depth insight into structure-reactivity/regioselectivity relationship of Lewis acid catalyzed cascade 4πe-cyclization/dicycloexpansion reaction," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    15. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Xiaoqian Wang & Yang Huang & Xiaoyu Xie & Yan Liu & Ziyu Huo & Maverick Lin & Hongliang Xin & Rong Tong, 2023. "Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    19. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Adarsh Dave & Jared Mitchell & Sven Burke & Hongyi Lin & Jay Whitacre & Venkatasubramanian Viswanathan, 2022. "Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58139-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.