IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63202-x.html
   My bibliography  Save this article

Integrated single-cell atlas of human atherosclerotic plaques

Author

Listed:
  • Korbinian Traeuble

    (Helmholtz Zentrum München
    Technical University of Munich
    Discovery Sciences, Roche Diagnostics GmbH)

  • Matthias Munz

    (Discovery Sciences, Roche Diagnostics GmbH)

  • Jessica Pauli

    (TUM University Hospital Rechts der Isar
    German Center for Cardiovascular Research, partner site Munich Heart Alliance)

  • Nadja Sachs

    (German Center for Cardiovascular Research, partner site Munich Heart Alliance
    TUM University Hospital Rechts der Isar)

  • Eshan Vafadarnejad

    (Discovery Sciences, Roche Diagnostics GmbH)

  • Tania Carrillo-Roa

    (Discovery Sciences, Roche Diagnostics GmbH)

  • Lars Maegdefessel

    (TUM University Hospital Rechts der Isar
    German Center for Cardiovascular Research, partner site Munich Heart Alliance)

  • Peter Kastner

    (Discovery Sciences, Roche Diagnostics GmbH)

  • Matthias Heinig

    (Helmholtz Zentrum München
    Technical University of Munich
    German Center for Cardiovascular Research, partner site Munich Heart Alliance)

Abstract

Atherosclerosis, a major cause of cardiovascular diseases, is characterized by the buildup of lipids and chronic inflammation in the arteries, leading to plaque formation and potential rupture. Despite recent advances in single-cell transcriptomics (scRNA-seq), the underlying immune mechanisms and transformations in structural cells driving plaque progression remain incompletely defined. Existing datasets often lack comprehensive coverage and consistent annotations, limiting the utility of downstream analyses. Here, we present an integrated single-cell atlas of human atherosclerotic plaques, covering roughly 250k high-quality annotated cells. We achieve robust cell type annotations validated by expert consensus and surface protein measurements. Using this atlas, we introduce distinct markers for plaque neutrophils, identify a proangiogenic endothelial cell cluster enriched in advanced lesions, and specialized macrophage subsets. We also establish that fibromyocytes are exclusive to vascular tissue. This comprehensive atlas enables accurate automatic cell type annotation of new datasets, improves experimental design by guiding sample size and detection power, and supports the deconvolution of bulk RNA-seq data. An interactive WebUI makes these resources widely accessible.

Suggested Citation

  • Korbinian Traeuble & Matthias Munz & Jessica Pauli & Nadja Sachs & Eshan Vafadarnejad & Tania Carrillo-Roa & Lars Maegdefessel & Peter Kastner & Matthias Heinig, 2025. "Integrated single-cell atlas of human atherosclerotic plaques," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63202-x
    DOI: 10.1038/s41467-025-63202-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63202-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63202-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katharina T. Schmid & Barbara Höllbacher & Cristiana Cruceanu & Anika Böttcher & Heiko Lickert & Elisabeth B. Binder & Fabian J. Theis & Matthias Heinig, 2021. "scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    2. Christina V. Theodoris & Ling Xiao & Anant Chopra & Mark D. Chaffin & Zeina R. Al Sayed & Matthew C. Hill & Helene Mantineo & Elizabeth M. Brydon & Zexian Zeng & X. Shirley Liu & Patrick T. Ellinor, 2023. "Transfer learning enables predictions in network biology," Nature, Nature, vol. 618(7965), pages 616-624, June.
    3. Stefanie Kirchberger & Mohamed R. Shoeb & Daria Lazic & Andrea Wenninger-Weinzierl & Kristin Fischer & Lisa E. Shaw & Filomena Nogueira & Fikret Rifatbegovic & Eva Bozsaky & Ruth Ladenstein & Bernd Bo, 2024. "Comparative transcriptomics coupled to developmental grading via transgenic zebrafish reporter strains identifies conserved features in neutrophil maturation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Fischer & David S. Fischer & Roman Mukhin & Andrey Isaev & Evan Biederstedt & Alexandra-Chloé Villani & Fabian J. Theis, 2024. "scTab: Scaling cross-tissue single-cell annotation models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Yuansong Zeng & Jiancong Xie & Ningyuan Shangguan & Zhuoyi Wei & Wenbing Li & Yun Su & Shuangyu Yang & Chengyang Zhang & Jinbo Zhang & Nan Fang & Hongyu Zhang & Yutong Lu & Huiying Zhao & Jue Fan & We, 2025. "CellFM: a large-scale foundation model pre-trained on transcriptomics of 100 million human cells," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    3. Babak Masoudi, 2024. "An optimized dual attention-based network for brain tumor classification," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(7), pages 2868-2879, July.
    4. Chengwei Yan & Yu Zhang & Jiuxin Feng & Heyang Hua & Zhihan Ruan & Zhen Li & Siyu Li & Chaoyang Yan & Pingjing Li & Jian Liu & Shengquan Chen, 2025. "Triple-effect correction for Cell Painting data with contrastive and domain-adversarial learning," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    5. Matthew C. Hill & Bridget Simonson & Carolina Roselli & Ling Xiao & Caroline N. Herndon & Mark Chaffin & Helene Mantineo & Ondine Atwa & Harshit Bhasin & Yasmine Guedira & Kenneth C. Bedi & Kenneth B., 2024. "Large-scale single-nuclei profiling identifies role for ATRNL1 in atrial fibrillation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Yan Cui & Zhiyuan Yuan, 2025. "Prioritizing perturbation-responsive gene patterns using interpretable deep learning," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    7. Roy Oelen & Dylan H. Vries & Harm Brugge & M. Grace Gordon & Martijn Vochteloo & Chun J. Ye & Harm-Jan Westra & Lude Franke & Monique G. P. Wijst, 2022. "Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Hao Li & Zebei Han & Yu Sun & Fu Wang & Pengzhen Hu & Yuang Gao & Xuemei Bai & Shiyu Peng & Chao Ren & Xiang Xu & Zeyu Liu & Hebing Chen & Yang Yang & Xiaochen Bo, 2024. "CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Chunman Zuo & Junjie Xia & Yupeng Xu & Ying Xu & Pingting Gao & Jing Zhang & Yan Wang & Luonan Chen, 2025. "stClinic dissects clinically relevant niches by integrating spatial multi-slice multi-omics data in dynamic graphs," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    10. Amélie Roehrig & Theo Z. Hirsch & Aurore Pire & Guillaume Morcrette & Barkha Gupta & Charles Marcaillou & Sandrine Imbeaud & Christophe Chardot & Emmanuel Gonzales & Emmanuel Jacquemin & Masahiro Seki, 2024. "Single-cell multiomics reveals the interplay of clonal evolution and cellular plasticity in hepatoblastoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Kang Jin & Zuobai Zhang & Ke Zhang & Francesca Viggiani & Claire Callahan & Jian Tang & Bruce J. Aronow & Jian Shu, 2025. "Bering: joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    12. Danruo Deng & Wuqin Xu & Bian Wu & Hans Peter Comes & Yu Feng & Pan Li & Jinfang Zheng & Guangyong Chen & Pheng-Ann Heng, 2025. "PhyloTune: An efficient method to accelerate phylogenetic updates using a pretrained DNA language model," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Xiaoying Wang & Maoteng Duan & Jingxian Li & Anjun Ma & Gang Xin & Dong Xu & Zihai Li & Bingqiang Liu & Qin Ma, 2024. "MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Kailu Song & Yumin Zheng & Bowen Zhao & David H. Eidelman & Jian Tang & Jun Ding, 2025. "DOLPHIN advances single-cell transcriptomics beyond gene level by leveraging exon and junction reads," Nature Communications, Nature, vol. 16(1), pages 1-26, December.
    15. Hanwen Xing & Christopher Yau, 2025. "GPerturb: Gaussian process modelling of single-cell perturbation data," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    16. Jiawei Zhu & Yaru Meng & Wenli Gao & Shuo Yang & Wenjie Zhu & Xiangyang Ji & Xuanpei Zhai & Wan-Qiu Liu & Yuan Luo & Shengjie Ling & Jian Li & Yifan Liu, 2025. "AI-driven high-throughput droplet screening of cell-free gene expression," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Jun-Lin Yu & Cong Zhou & Xiang-Li Ning & Jun Mou & Fan-Bo Meng & Jing-Wei Wu & Yi-Ting Chen & Biao-Dan Tang & Xiang-Gen Liu & Guo-Bo Li, 2025. "Knowledge-guided diffusion model for 3D ligand-pharmacophore mapping," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    18. Jérémie Kalfon & Jules Samaran & Gabriel Peyré & Laura Cantini, 2025. "scPRINT: pre-training on 50 million cells allows robust gene network predictions," Nature Communications, Nature, vol. 16(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63202-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.