IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61580-w.html
   My bibliography  Save this article

DOLPHIN advances single-cell transcriptomics beyond gene level by leveraging exon and junction reads

Author

Listed:
  • Kailu Song

    (McGill University
    Research Institute of the McGill University Health Centre)

  • Yumin Zheng

    (McGill University
    Research Institute of the McGill University Health Centre)

  • Bowen Zhao

    (Research Institute of the McGill University Health Centre
    McGill University)

  • David H. Eidelman

    (Research Institute of the McGill University Health Centre
    McGill University)

  • Jian Tang

    (HEC Montréal
    Mila - Quebec AI Institute)

  • Jun Ding

    (McGill University
    Research Institute of the McGill University Health Centre
    McGill University
    Mila - Quebec AI Institute)

Abstract

The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets.

Suggested Citation

  • Kailu Song & Yumin Zheng & Bowen Zhao & David H. Eidelman & Jian Tang & Jun Ding, 2025. "DOLPHIN advances single-cell transcriptomics beyond gene level by leveraging exon and junction reads," Nature Communications, Nature, vol. 16(1), pages 1-26, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61580-w
    DOI: 10.1038/s41467-025-61580-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61580-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61580-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Christina V. Theodoris & Ling Xiao & Anant Chopra & Mark D. Chaffin & Zeina R. Al Sayed & Matthew C. Hill & Helene Mantineo & Elizabeth M. Brydon & Zexian Zeng & X. Shirley Liu & Patrick T. Ellinor, 2023. "Transfer learning enables predictions in network biology," Nature, Nature, vol. 618(7965), pages 616-624, June.
    3. Zehua Zeng & Yuqing Ma & Lei Hu & Bowen Tan & Peng Liu & Yixuan Wang & Cencan Xing & Yuanyan Xiong & Hongwu Du, 2024. "OmicVerse: a framework for bridging and deepening insights across bulk and single-cell sequencing," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Cheng-Kai Shiau & Lina Lu & Rachel Kieser & Kazutaka Fukumura & Timothy Pan & Hsiao-Yun Lin & Jie Yang & Eric L. Tong & GaHyun Lee & Yuanqing Yan & Jason T. Huse & Ruli Gao, 2023. "High throughput single cell long-read sequencing analyses of same-cell genotypes and phenotypes in human tumors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Adam L. Haber & Moshe Biton & Noga Rogel & Rebecca H. Herbst & Karthik Shekhar & Christopher Smillie & Grace Burgin & Toni M. Delorey & Michael R. Howitt & Yarden Katz & Itay Tirosh & Semir Beyaz & Da, 2017. "A single-cell survey of the small intestinal epithelium," Nature, Nature, vol. 551(7680), pages 333-339, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Lucy Xia & Christy Lee & Jingyi Jessica Li, 2024. "Statistical method scDEED for detecting dubious 2D single-cell embeddings and optimizing t-SNE and UMAP hyperparameters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Jérémie Kalfon & Jules Samaran & Gabriel Peyré & Laura Cantini, 2025. "scPRINT: pre-training on 50 million cells allows robust gene network predictions," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    4. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    5. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    6. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    7. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    8. Isabel Mulet & Carmen Grueso-Cortina & Mireia Cortés-Cano & Daniela Gerovska & Guangming Wu & Stefania Alexandra Iakab & Daniel Jimenez-Blasco & Andrea Curtabbi & Pablo Hernansanz-Agustín & Harmony Ke, 2024. "TET3 regulates terminal cell differentiation at the metabolic level," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Felix Fischer & David S. Fischer & Roman Mukhin & Andrey Isaev & Evan Biederstedt & Alexandra-Chloé Villani & Fabian J. Theis, 2024. "scTab: Scaling cross-tissue single-cell annotation models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    11. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    13. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    14. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    15. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    16. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    17. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    18. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    19. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    20. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61580-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.