Author
Abstract
Spatially resolved transcriptomics enables mapping of multiplexed gene expression within tissue contexts. While existing methods prioritize spatially variable genes within a single slice, few address identifying genes with differential spatial expression patterns (DSEPs) across multiple conditions—an critical need for complex experimental designs. Challenges include modeling cross-slice spatial variation, scalability to large datasets, and disentangling inter-slice heterogeneity. We introduce DSEP gene prioritization as a new analytical task and present River, an interpretable deep learning framework that identifies genes exhibiting condition-relevant spatial changes. River features a two-branch predictive architecture and a post hoc attribution strategy to rank genes (or other features) by their contribution to condition differences. Its spatially-informed modeling ensures scalability to large spatial datasets, and we further decouple spatial and non-spatial components to enhance interpretability. We evaluate River on simulations and apply it to diverse biological contexts, including embryogenesis, diabetes-affected spermatogenesis, and lupus-associated splenic changes. In triple-negative breast cancer, River prioritizes survival-associated spatial patterns that generalize across patients. River is distribution-agnostic and compatible with diverse spatial data types, offering a flexible and scalable solution for analyzing tissue-wide expression dynamics across multiple biological conditions.
Suggested Citation
Yan Cui & Zhiyuan Yuan, 2025.
"Prioritizing perturbation-responsive gene patterns using interpretable deep learning,"
Nature Communications, Nature, vol. 16(1), pages 1-19, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61476-9
DOI: 10.1038/s41467-025-61476-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61476-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.