IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51590-5.html
   My bibliography  Save this article

Graph Fourier transform for spatial omics representation and analyses of complex organs

Author

Listed:
  • Yuzhou Chang

    (Ohio State University
    The Ohio State University)

  • Jixin Liu

    (Shandong University)

  • Yi Jiang

    (Ohio State University)

  • Anjun Ma

    (Ohio State University
    The Ohio State University)

  • Yao Yu Yeo

    (Beth Israel Deaconess Medical Center
    Harvard Medical School)

  • Qi Guo

    (Ohio State University)

  • Megan McNutt

    (Ohio State University)

  • Jordan E. Krull

    (Ohio State University
    The Ohio State University)

  • Scott J. Rodig

    (Dana Farber Cancer Institute
    Brigham & Women’s Hospital)

  • Dan H. Barouch

    (Beth Israel Deaconess Medical Center
    Ragon Institute of MGH, MIT, and Harvard)

  • Garry P. Nolan

    (Stanford University School of Medicine)

  • Dong Xu

    (University of Missouri)

  • Sizun Jiang

    (Beth Israel Deaconess Medical Center
    Harvard Medical School
    Dana Farber Cancer Institute)

  • Zihai Li

    (The Ohio State University)

  • Bingqiang Liu

    (Shandong University)

  • Qin Ma

    (Ohio State University
    The Ohio State University)

Abstract

Spatial omics technologies decipher functional components of complex organs at cellular and subcellular resolutions. We introduce Spatial Graph Fourier Transform (SpaGFT) and apply graph signal processing to a wide range of spatial omics profiling platforms to generate their interpretable representations. This representation supports spatially variable gene identification and improves gene expression imputation, outperforming existing tools in analyzing human and mouse spatial transcriptomics data. SpaGFT can identify immunological regions for B cell maturation in human lymph nodes Visium data and characterize variations in secondary follicles using in-house human tonsil CODEX data. Furthermore, it can be integrated seamlessly into other machine learning frameworks, enhancing accuracy in spatial domain identification, cell type annotation, and subcellular feature inference by up to 40%. Notably, SpaGFT detects rare subcellular organelles, such as Cajal bodies and Set1/COMPASS complexes, in high-resolution spatial proteomics data. This approach provides an explainable graph representation method for exploring tissue biology and function.

Suggested Citation

  • Yuzhou Chang & Jixin Liu & Yi Jiang & Anjun Ma & Yao Yu Yeo & Qi Guo & Megan McNutt & Jordan E. Krull & Scott J. Rodig & Dan H. Barouch & Garry P. Nolan & Dong Xu & Sizun Jiang & Zihai Li & Bingqiang , 2024. "Graph Fourier transform for spatial omics representation and analyses of complex organs," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51590-5
    DOI: 10.1038/s41467-024-51590-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51590-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51590-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Candace C. Liu & Noah F. Greenwald & Alex Kong & Erin F. McCaffrey & Ke Xuan Leow & Dunja Mrdjen & Bryan J. Cannon & Josef Lorenz Rumberger & Sricharan Reddy Varra & Michael Angelo, 2023. "Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Rebecca D. Hodge & Trygve E. Bakken & Jeremy A. Miller & Kimberly A. Smith & Eliza R. Barkan & Lucas T. Graybuck & Jennie L. Close & Brian Long & Nelson Johansen & Osnat Penn & Zizhen Yao & Jeroen Egg, 2019. "Conserved cell types with divergent features in human versus mouse cortex," Nature, Nature, vol. 573(7772), pages 61-68, September.
    3. Bosiljka Tasic & Zizhen Yao & Lucas T. Graybuck & Kimberly A. Smith & Thuc Nghi Nguyen & Darren Bertagnolli & Jeff Goldy & Emma Garren & Michael N. Economo & Sarada Viswanathan & Osnat Penn & Trygve B, 2018. "Shared and distinct transcriptomic cell types across neocortical areas," Nature, Nature, vol. 563(7729), pages 72-78, November.
    4. Blue B. Lake & Rajasree Menon & Seth Winfree & Qiwen Hu & Ricardo Melo Ferreira & Kian Kalhor & Daria Barwinska & Edgar A. Otto & Michael Ferkowicz & Dinh Diep & Nongluk Plongthongkum & Amanda Knoten , 2023. "An atlas of healthy and injured cell states and niches in the human kidney," Nature, Nature, vol. 619(7970), pages 585-594, July.
    5. Xin Tang & Jiawei Zhang & Yichun He & Xinhe Zhang & Zuwan Lin & Sebastian Partarrieu & Emma Bou Hanna & Zhaolin Ren & Hao Shen & Yuhong Yang & Xiao Wang & Na Li & Jie Ding & Jia Liu, 2023. "Explainable multi-task learning for multi-modality biological data analysis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Ke Zhang & Wanwan Feng & Peng Wang, 2022. "Identification of spatially variable genes with graph cuts," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Ken Tajima & Satoru Matsuda & Toshifumi Yae & Benjamin J. Drapkin & Robert Morris & Myriam Boukhali & Kira Niederhoffer & Valentine Comaills & Taronish Dubash & Linda Nieman & Hongshan Guo & Neelima K, 2019. "SETD1A protects from senescence through regulation of the mitotic gene expression program," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Daniel J. Lodge & Hannah B. Elam & Angela M. Boley & Jennifer J. Donegan, 2023. "Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Hongru Hu & Gerald Quon, 2024. "scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Ying Lei & Mengnan Cheng & Zihao Li & Zhenkun Zhuang & Liang Wu & Yunong sun & Lei Han & Zhihao Huang & Yuzhou Wang & Zifei Wang & Liqin Xu & Yue Yuan & Shang Liu & Taotao Pan & Jiarui Xie & Chuanyu L, 2022. "Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Yina Wei & Anirban Nandi & Xiaoxuan Jia & Joshua H. Siegle & Daniel Denman & Soo Yeun Lee & Anatoly Buchin & Werner Geit & Clayton P. Mosher & Shawn Olsen & Costas A. Anastassiou, 2023. "Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Gavin J. Sutton & Daniel Poppe & Rebecca K. Simmons & Kieran Walsh & Urwah Nawaz & Ryan Lister & Johann A. Gagnon-Bartsch & Irina Voineagu, 2022. "Comprehensive evaluation of deconvolution methods for human brain gene expression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Yuqiu Zhou & Wei He & Weizhen Hou & Ying Zhu, 2024. "Pianno: a probabilistic framework automating semantic annotation for spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Prateek Kumar & Annie M. Goettemoeller & Claudia Espinosa-Garcia & Brendan R. Tobin & Ali Tfaily & Ruth S. Nelson & Aditya Natu & Eric B. Dammer & Juliet V. Santiago & Sneha Malepati & Lihong Cheng & , 2024. "Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    11. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Jonathan P. Ling & Alexei M. Bygrave & Clayton P. Santiago & Rogger P. Carmen-Orozco & Vickie T. Trinh & Minzhong Yu & Yini Li & Ying Liu & Kyra D. Bowden & Leighton H. Duncan & Jeong Han & Kamil Tane, 2022. "Cell-specific regulation of gene expression using splicing-dependent frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Jonas Engesser & Robin Khatri & Darius P. Schaub & Yu Zhao & Hans-Joachim Paust & Zeba Sultana & Nariaki Asada & Jan-Hendrik Riedel & Varshi Sivayoganathan & Anett Peters & Anna Kaffke & Saskia-Lariss, 2024. "Immune profiling-based targeting of pathogenic T cells with ustekinumab in ANCA-associated glomerulonephritis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Dehua Peng & Zhipeng Gui & Dehe Wang & Yuncheng Ma & Zichen Huang & Yu Zhou & Huayi Wu, 2022. "Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Yash Patel & Jean Shin & Eeva Sliz & Ariana Tang & Aniket Mishra & Rui Xia & Edith Hofer & Hema Sekhar Reddy Rajula & Ruiqi Wang & Frauke Beyer & Katrin Horn & Max Riedl & Jing Yu & Henry Völzke & Rob, 2024. "Genetic risk factors underlying white matter hyperintensities and cortical atrophy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Wenxu Zhang & Yajuan Li & Anthony A. Fung & Zhi Li & Hongje Jang & Honghao Zha & Xiaoping Chen & Fangyuan Gao & Jane Y. Wu & Huaxin Sheng & Junjie Yao & Dorota Skowronska-Krawczyk & Sanjay Jain & Ling, 2024. "Multi-molecular hyperspectral PRM-SRS microscopy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Koun Onodera & Hiroyuki K. Kato, 2022. "Translaminar recurrence from layer 5 suppresses superficial cortical layers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. April R. Kriebel & Joshua D. Welch, 2022. "UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51590-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.