IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v573y2019i7772d10.1038_s41586-019-1506-7.html
   My bibliography  Save this article

Conserved cell types with divergent features in human versus mouse cortex

Author

Listed:
  • Rebecca D. Hodge

    (Allen Institute for Brain Science)

  • Trygve E. Bakken

    (Allen Institute for Brain Science)

  • Jeremy A. Miller

    (Allen Institute for Brain Science)

  • Kimberly A. Smith

    (Allen Institute for Brain Science)

  • Eliza R. Barkan

    (Allen Institute for Brain Science)

  • Lucas T. Graybuck

    (Allen Institute for Brain Science)

  • Jennie L. Close

    (Allen Institute for Brain Science)

  • Brian Long

    (Allen Institute for Brain Science)

  • Nelson Johansen

    (University of California, Davis)

  • Osnat Penn

    (Allen Institute for Brain Science)

  • Zizhen Yao

    (Allen Institute for Brain Science)

  • Jeroen Eggermont

    (Leiden University Medical Center)

  • Thomas Höllt

    (Leiden University Medical Center
    Delft University of Technology)

  • Boaz P. Levi

    (Allen Institute for Brain Science)

  • Soraya I. Shehata

    (Allen Institute for Brain Science)

  • Brian Aevermann

    (J. Craig Venter Institute)

  • Allison Beller

    (University of Washington)

  • Darren Bertagnolli

    (Allen Institute for Brain Science)

  • Krissy Brouner

    (Allen Institute for Brain Science)

  • Tamara Casper

    (Allen Institute for Brain Science)

  • Charles Cobbs

    (Swedish Neuroscience Institute)

  • Rachel Dalley

    (Allen Institute for Brain Science)

  • Nick Dee

    (Allen Institute for Brain Science)

  • Song-Lin Ding

    (Allen Institute for Brain Science)

  • Richard G. Ellenbogen

    (University of Washington School of Medicine)

  • Olivia Fong

    (Allen Institute for Brain Science)

  • Emma Garren

    (Allen Institute for Brain Science)

  • Jeff Goldy

    (Allen Institute for Brain Science)

  • Ryder P. Gwinn

    (Swedish Neuroscience Institute)

  • Daniel Hirschstein

    (Allen Institute for Brain Science)

  • C. Dirk Keene

    (University of Washington)

  • Mohamed Keshk

    (J. Craig Venter Institute)

  • Andrew L. Ko

    (University of Washington School of Medicine
    Regional Epilepsy Center at Harborview Medical Center)

  • Kanan Lathia

    (Allen Institute for Brain Science)

  • Ahmed Mahfouz

    (Leiden University Medical Center
    Delft University of Technology)

  • Zoe Maltzer

    (Allen Institute for Brain Science)

  • Medea McGraw

    (Allen Institute for Brain Science)

  • Thuc Nghi Nguyen

    (Allen Institute for Brain Science)

  • Julie Nyhus

    (Allen Institute for Brain Science)

  • Jeffrey G. Ojemann

    (University of Washington School of Medicine
    Regional Epilepsy Center at Harborview Medical Center)

  • Aaron Oldre

    (Allen Institute for Brain Science)

  • Sheana Parry

    (Allen Institute for Brain Science)

  • Shannon Reynolds

    (Allen Institute for Brain Science)

  • Christine Rimorin

    (Allen Institute for Brain Science)

  • Nadiya V. Shapovalova

    (Allen Institute for Brain Science)

  • Saroja Somasundaram

    (Allen Institute for Brain Science)

  • Aaron Szafer

    (Allen Institute for Brain Science)

  • Elliot R. Thomsen

    (Allen Institute for Brain Science)

  • Michael Tieu

    (Allen Institute for Brain Science)

  • Gerald Quon

    (University of California, Davis)

  • Richard H. Scheuermann

    (J. Craig Venter Institute
    University of California, San Diego)

  • Rafael Yuste

    (Columbia University)

  • Susan M. Sunkin

    (Allen Institute for Brain Science)

  • Boudewijn Lelieveldt

    (Leiden University Medical Center
    Delft University of Technology)

  • David Feng

    (Allen Institute for Brain Science)

  • Lydia Ng

    (Allen Institute for Brain Science)

  • Amy Bernard

    (Allen Institute for Brain Science)

  • Michael Hawrylycz

    (Allen Institute for Brain Science)

  • John W. Phillips

    (Allen Institute for Brain Science)

  • Bosiljka Tasic

    (Allen Institute for Brain Science)

  • Hongkui Zeng

    (Allen Institute for Brain Science)

  • Allan R. Jones

    (Allen Institute for Brain Science)

  • Christof Koch

    (Allen Institute for Brain Science)

  • Ed S. Lein

    (Allen Institute for Brain Science)

Abstract

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.

Suggested Citation

  • Rebecca D. Hodge & Trygve E. Bakken & Jeremy A. Miller & Kimberly A. Smith & Eliza R. Barkan & Lucas T. Graybuck & Jennie L. Close & Brian Long & Nelson Johansen & Osnat Penn & Zizhen Yao & Jeroen Egg, 2019. "Conserved cell types with divergent features in human versus mouse cortex," Nature, Nature, vol. 573(7772), pages 61-68, September.
  • Handle: RePEc:nat:nature:v:573:y:2019:i:7772:d:10.1038_s41586-019-1506-7
    DOI: 10.1038/s41586-019-1506-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1506-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1506-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao Qu & Fa Yang & Tao Zhu & Yingshuo Wang & Wen Fang & Yan Ding & Xue Zhao & Xianjia Qi & Qiangmin Xie & Ming Chen & Qiang Xu & Yicheng Xie & Yang Sun & Dijun Chen, 2022. "A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Gavin J. Sutton & Daniel Poppe & Rebecca K. Simmons & Kieran Walsh & Urwah Nawaz & Ryan Lister & Johann A. Gagnon-Bartsch & Irina Voineagu, 2022. "Comprehensive evaluation of deconvolution methods for human brain gene expression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Yueqi Wang & Simone Chiola & Guang Yang & Chad Russell & Celeste J. Armstrong & Yuanyuan Wu & Jay Spampanato & Paisley Tarboton & H. M. Arif Ullah & Nicolas U. Edgar & Amelia N. Chang & David A. Harmi, 2022. "Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
    4. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Malosree Maitra & Haruka Mitsuhashi & Reza Rahimian & Anjali Chawla & Jennie Yang & Laura M. Fiori & Maria Antonietta Davoli & Kelly Perlman & Zahia Aouabed & Deborah C. Mash & Matthew Suderman & Nagu, 2023. "Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Yuqiu Zhou & Wei He & Weizhen Hou & Ying Zhu, 2024. "Pianno: a probabilistic framework automating semantic annotation for spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Stan L. W. Driessens & Anna A. Galakhova & Djai B. Heyer & Isabel J. Pieterse & René Wilbers & Eline J. Mertens & Femke Waleboer & Tim S. Heistek & Loet Coenen & Julia R. Meijer & Sander Idema & Phili, 2023. "Genes associated with cognitive ability and HAR show overlapping expression patterns in human cortical neuron types," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Yina Wei & Anirban Nandi & Xiaoxuan Jia & Joshua H. Siegle & Daniel Denman & Soo Yeun Lee & Anatoly Buchin & Werner Geit & Clayton P. Mosher & Shawn Olsen & Costas A. Anastassiou, 2023. "Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Min Jung & Michelle Dourado & James Maksymetz & Amanda Jacobson & Benjamin I. Laufer & Miriam Baca & Oded Foreman & David H. Hackos & Lorena Riol-Blanco & Joshua S. Kaminker, 2023. "Cross-species transcriptomic atlas of dorsal root ganglia reveals species-specific programs for sensory function," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Orshay Gabay & Yoav Shoshan & Eli Kopel & Udi Ben-Zvi & Tomer D. Mann & Noam Bressler & Roni Cohen‐Fultheim & Amos A. Schaffer & Shalom Hillel Roth & Ziv Tzur & Erez Y. Levanon & Eli Eisenberg, 2022. "Landscape of adenosine-to-inosine RNA recoding across human tissues," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    13. Daniel J. Lodge & Hannah B. Elam & Angela M. Boley & Jennifer J. Donegan, 2023. "Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Eunnyung Bae & Ping Huang & Gaёlle Müller-Greven & Dolores Hambardzumyan & Andrew Edward Sloan & Amy S. Nowacki & Nicholas Marko & Cathleen R. Carlin & Candece L. Gladson, 2022. "Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Dongsheng Chen & Jian Sun & Jiacheng Zhu & Xiangning Ding & Tianming Lan & Xiran Wang & Weiying Wu & Zhihua Ou & Linnan Zhu & Peiwen Ding & Haoyu Wang & Lihua Luo & Rong Xiang & Xiaoling Wang & Jiayin, 2021. "Single cell atlas for 11 non-model mammals, reptiles and birds," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    17. Paul Little & Si Liu & Vasyl Zhabotynsky & Yun Li & Dan-Yu Lin & Wei Sun, 2023. "A computational method for cell type-specific expression quantitative trait loci mapping using bulk RNA-seq data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Hao Xu & Shuyan Wang & Minghao Fang & Songwen Luo & Chunpeng Chen & Siyuan Wan & Rirui Wang & Meifang Tang & Tian Xue & Bin Li & Jun Lin & Kun Qu, 2023. "SPACEL: deep learning-based characterization of spatial transcriptome architectures," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Ying Lei & Mengnan Cheng & Zihao Li & Zhenkun Zhuang & Liang Wu & Yunong sun & Lei Han & Zhihao Huang & Yuzhou Wang & Zifei Wang & Liqin Xu & Yue Yuan & Shang Liu & Taotao Pan & Jiarui Xie & Chuanyu L, 2022. "Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    21. Prateek Kumar & Annie M. Goettemoeller & Claudia Espinosa-Garcia & Brendan R. Tobin & Ali Tfaily & Ruth S. Nelson & Aditya Natu & Eric B. Dammer & Juliet V. Santiago & Sneha Malepati & Lihong Cheng & , 2024. "Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology," Nature Communications, Nature, vol. 15(1), pages 1-26, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:573:y:2019:i:7772:d:10.1038_s41586-019-1506-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.