IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57859-7.html
   My bibliography  Save this article

In-depth insight into structure-reactivity/regioselectivity relationship of Lewis acid catalyzed cascade 4πe-cyclization/dicycloexpansion reaction

Author

Listed:
  • Ka Lu

    (Lanzhou University)

  • Pan-Pan Zhou

    (Lanzhou University)

  • Yong-Qiang Tu

    (Lanzhou University
    Shanghai Jiao Tong University)

  • Fu-Min Zhang

    (Lanzhou University)

  • Xiao-Ming Zhang

    (Lanzhou University)

  • Kai Li

    (Lanzhou University)

  • Kun Fang

    (Shanghai Jiao Tong University)

  • Yun-Peng Wang

    (Shanghai Jiao Tong University)

  • Zi-Hao Li

    (Shanghai Jiao Tong University)

  • Jia-Qi Li

    (Zhejiang University)

Abstract

The Lewis acid-catalyzed tittle reaction of 1,3-dicycloalkenlidine ketones is recognized as so far the shortest and most effective 1-step method for construction of angular tricyclic scaffolds, which are extensively found in bioactive terpenoids. Here, a further kinetic study of this reaction with 30 reaction examples is carried out using in situ IR technology and DFT calculation. That enables the creation of well-fitted linear relationships of lnk/(ΔG1‡/T), ΔG1‡/ΔG2, ln(k/kH)/σp, reflecting the structure′s effect on reactivity/selectivity, and validating the reaction mechanism. Particularly highlighted is that substituents C1-R1/C3-R2 activate this reaction in the order: alkyl ≈ aryl >> aryl S-, halogen, alkyl O-, and alkyl N-. While electron-withdrawing R1/R2 will inactivate this reaction. When R1 = R2 = Me and m = 4, the reactivity of n-membered substrates follow the order of ring′s size: 3 > 4 > 7 > 6 > 5. Then, DFT calculations combined with machine learning algorithms establish a prediction model for first cycloexpansion (i e. regioselectivity). Electron-donating R1/R2 can direct preferentially the first cycloexpansion of its near ring in the order: alkyl > aryl > halogen ≈ alkyl O- > alkyl N- > aryl S-, which can be fitted into the relationship as ΔΔG/(ΔΔG-R1, ΔΔG-R2, ΔΔG-m, ΔΔG-n) or ΔΔG/(m-rse, m-ra, n-rse, n-ra, R1-σp, R2-σp). When R1 and R2 show the similar electronic effect, the first cycloexpansion of m/n takes place in the order of ring′s size: 4 > 5 > 6, 7, 8 > 3. Six examples are successfully validated by model prediction and then experiment. In this work, structure-reactivity relationship and regioselectivity predicting model are established.

Suggested Citation

  • Ka Lu & Pan-Pan Zhou & Yong-Qiang Tu & Fu-Min Zhang & Xiao-Ming Zhang & Kai Li & Kun Fang & Yun-Peng Wang & Zi-Hao Li & Jia-Qi Li, 2025. "In-depth insight into structure-reactivity/regioselectivity relationship of Lewis acid catalyzed cascade 4πe-cyclization/dicycloexpansion reaction," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57859-7
    DOI: 10.1038/s41467-025-57859-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57859-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57859-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin J. Shields & Jason Stevens & Jun Li & Marvin Parasram & Farhan Damani & Jesus I. Martinez Alvarado & Jacob M. Janey & Ryan P. Adams & Abigail G. Doyle, 2021. "Bayesian reaction optimization as a tool for chemical synthesis," Nature, Nature, vol. 590(7844), pages 89-96, February.
    2. Shu-Wen Li & Li-Cheng Xu & Cheng Zhang & Shuo-Qing Zhang & Xin Hong, 2023. "Reaction performance prediction with an extrapolative and interpretable graph model based on chemical knowledge," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yun-Peng Wang & Kun Fang & Yong-Qiang Tu & Jun-Jie Yin & Qi Zhao & Tian Ke, 2022. "An efficient approach to angular tricyclic molecular architecture via Nazarov-like cyclization and double ring-expansion cascade," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naoki Noto & Ryuga Kunisada & Tabea Rohlfs & Manami Hayashi & Ryosuke Kojima & Olga García Mancheño & Takeshi Yanai & Susumu Saito, 2025. "Transfer learning across different photocatalytic organic reactions," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Wenyu Zhang & Lucy Hao & Veronica Lai & Ryan Corkery & Jacob Jessiman & Jiayu Zhang & Junliang Liu & Yusuke Sato & Maria Politi & Matthew E. Reish & Rebekah Greenwood & Noah Depner & Jiyoon Min & Rama, 2025. "IvoryOS: an interoperable web interface for orchestrating Python-based self-driving laboratories," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    5. Haowen Zhong & Yilan Liu & Haibin Sun & Yuru Liu & Rentao Zhang & Baochen Li & Yi Yang & Yuqing Huang & Fei Yang & Frankie S. Mak & Klement Foo & Sen Lin & Tianshu Yu & Peng Wang & Xiaoxue Wang, 2025. "Towards global reaction feasibility and robustness prediction with high throughput data and bayesian deep learning," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Ana Laura Dias & Latimah Bustillo & Tiago Rodrigues, 2023. "Limitations of representation learning in small molecule property prediction," Nature Communications, Nature, vol. 14(1), pages 1-2, December.
    9. Zhenxing Wang & Yunjun Yu & Kallol Roy & Cheng Gao & Lei Huang, 2023. "The Application of Machine Learning: Controlling the Preparation of Environmental Materials and Carbon Neutrality," IJERPH, MDPI, vol. 20(3), pages 1-4, January.
    10. Jiawei Zhu & Yaru Meng & Wenli Gao & Shuo Yang & Wenjie Zhu & Xiangyang Ji & Xuanpei Zhai & Wan-Qiu Liu & Yuan Luo & Shengjie Ling & Jian Li & Yifan Liu, 2025. "AI-driven high-throughput droplet screening of cell-free gene expression," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Manu Suvarna & Tangsheng Zou & Sok Ho Chong & Yuzhen Ge & Antonio J. Martín & Javier Pérez-Ramírez, 2024. "Active learning streamlines development of high performance catalysts for higher alcohol synthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Chen, Tiansheng & Kang, Yanjie & Yan, Pengbo & Yuan, Yuan & Feng, Haoyang & Wang, Junhao & Zhai, Houzhong & Zha, Yuting & Zhou, Yuan & Tian, Gengyuan & Wang, Yangle, 2024. "Supercritical carbon dioxide critical flow model based on a physics-informed neural network," Energy, Elsevier, vol. 313(C).
    13. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Xiaoqian Wang & Yang Huang & Xiaoyu Xie & Yan Liu & Ziyu Huo & Maverick Lin & Hongliang Xin & Rong Tong, 2023. "Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    16. Adarsh Dave & Jared Mitchell & Sven Burke & Hongyi Lin & Jay Whitacre & Venkatasubramanian Viswanathan, 2022. "Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Kelsey L. Snapp & Benjamin Verdier & Aldair E. Gongora & Samuel Silverman & Adedire D. Adesiji & Elise F. Morgan & Timothy J. Lawton & Emily Whiting & Keith A. Brown, 2024. "Superlative mechanical energy absorbing efficiency discovered through self-driving lab-human partnership," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Nathan J. Szymanski & Pragnay Nevatia & Christopher J. Bartel & Yan Zeng & Gerbrand Ceder, 2023. "Autonomous and dynamic precursor selection for solid-state materials synthesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jiaru Bai & Sebastian Mosbach & Connor J. Taylor & Dogancan Karan & Kok Foong Lee & Simon D. Rihm & Jethro Akroyd & Alexei A. Lapkin & Markus Kraft, 2024. "A dynamic knowledge graph approach to distributed self-driving laboratories," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Lung-Yi Chen & Yi-Pei Li, 2025. "Uncertainty quantification with graph neural networks for efficient molecular design," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57859-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.