IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59431-9.html
   My bibliography  Save this article

Predicting rare drug-drug interaction events with dual-granular structure-adaptive and pair variational representation

Author

Listed:
  • Zhonghao Ren

    (Hunan University)

  • Xiangxiang Zeng

    (Hunan University)

  • Yizhen Lao

    (Hunan University)

  • Zhuhong You

    (Northwestern Polytechnical University)

  • Yifan Shang

    (Hunan University)

  • Quan Zou

    (University of Electronic Science and Technology of China)

  • Chen Lin

    (Xiamen University
    Zhongguancun Academy)

Abstract

Adverse drug-drug interaction events (DDIEs) pose serious risks to patient safety, yet rare but severe interactions remain challenging to identify due to limited clinical data. Existing computational methods rely heavily on abundant samples, failing to identify rare DDIEs. Here we introduce RareDDIE, a metric-based meta-learning model that employs a dual-granular structure-driven pair variational representation to enhance rare DDIE prediction. To further address the challenge of zero-shot DDIE identification, we develop the Biological Semantic Transferring (BST) module, integrating large-scale sentence embeddings to form the ZetaDDIE variant. Our model outperforms existing methods in few-sample and zero-sample settings. Furthermore, we verify that knowledge transfer from DDIE can improve drug synergy predictions, surpassing existing models. Case studies on antiplatelet activity reduction and non-small cell lung cancer drug synergy further illustrate the practical value of RareDDIE. By analyzing the meta-knowledge construction process, we provide interpretability into the model’s decision-making. This work establishes an effective computational framework for rare DDIE prediction, leveraging meta-learning and knowledge transfer to overcome key challenges in data-limited scenarios.

Suggested Citation

  • Zhonghao Ren & Xiangxiang Zeng & Yizhen Lao & Zhuhong You & Yifan Shang & Quan Zou & Chen Lin, 2025. "Predicting rare drug-drug interaction events with dual-granular structure-adaptive and pair variational representation," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59431-9
    DOI: 10.1038/s41467-025-59431-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59431-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59431-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Feixiong Cheng & István A. Kovács & Albert-László Barabási, 2019. "Network-based prediction of drug combinations," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Patricia Jaaks & Elizabeth A. Coker & Daniel J. Vis & Olivia Edwards & Emma F. Carpenter & Simonetta M. Leto & Lisa Dwane & Francesco Sassi & Howard Lightfoot & Syd Barthorpe & Dieudonne Meer & Wanjua, 2022. "Effective drug combinations in breast, colon and pancreatic cancer cells," Nature, Nature, vol. 603(7899), pages 166-173, March.
    3. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Feixiong Cheng & István A. Kovács & Albert-László Barabási, 2019. "Publisher Correction: Network-based prediction of drug combinations," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    5. Yan-Jiao Zhang & Mu-Peng Li & Jie Tang & Xiao-Ping Chen, 2017. "Pharmacokinetic and Pharmacodynamic Responses to Clopidogrel: Evidences and Perspectives," IJERPH, MDPI, vol. 14(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Peyman Choopanian & Jaan-Olle Andressoo & Mehdi Mirzaie, 2025. "A fast approach for structural and evolutionary analysis based on energetic profile protein comparison," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Sepideh Sadegh & James Skelton & Elisa Anastasi & Andreas Maier & Klaudia Adamowicz & Anna Möller & Nils M. Kriege & Jaanika Kronberg & Toomas Haller & Tim Kacprowski & Anil Wipat & Jan Baumbach & Dav, 2023. "Lacking mechanistic disease definitions and corresponding association data hamper progress in network medicine and beyond," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Katrin Rabold & Martijn Zoodsma & Inge Grondman & Yunus Kuijpers & Manita Bremmers & Martin Jaeger & Bowen Zhang & Willemijn Hobo & Han J. Bonenkamp & Johannes H. W. Wilt & Marcel J. R. Janssen & Lenn, 2022. "Reprogramming of myeloid cells and their progenitors in patients with non-medullary thyroid carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Jiahua Rao & Jiancong Xie & Qianmu Yuan & Deqin Liu & Zhen Wang & Yutong Lu & Shuangjia Zheng & Yuedong Yang, 2024. "A variational expectation-maximization framework for balanced multi-scale learning of protein and drug interactions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Mohsen Pourmousa & Sankalp Jain & Elena Barnaeva & Wengong Jin & Joshua Hochuli & Zina Itkin & Travis Maxfield & Cleber Melo-Filho & Andrew Thieme & Kelli Wilson & Carleen Klumpp-Thomas & Sam Michael , 2025. "AI-driven discovery of synergistic drug combinations against pancreatic cancer," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    7. Pisanu Buphamalai & Tomislav Kokotovic & Vanja Nagy & Jörg Menche, 2021. "Network analysis reveals rare disease signatures across multiple levels of biological organization," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Christopher Tosh & Mauricio Tec & Jessica B. White & Jeffrey F. Quinn & Glorymar Ibanez Sanchez & Paul Calder & Andrew L. Kung & Filemon S. Dela Cruz & Wesley Tansey, 2025. "A Bayesian active learning platform for scalable combination drug screens," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    9. Efthymia Chantzi & Michael Neidlin & George A Macheras & Leonidas G Alexopoulos & Mats G Gustafsson, 2020. "COMBSecretomics: A pragmatic methodological framework for higher-order drug combination analysis using secretomics," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    10. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Jiawei Zhu & Yaru Meng & Wenli Gao & Shuo Yang & Wenjie Zhu & Xiangyang Ji & Xuanpei Zhai & Wan-Qiu Liu & Yuan Luo & Shengjie Ling & Jian Li & Yifan Liu, 2025. "AI-driven high-throughput droplet screening of cell-free gene expression," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Aparajithan Venkateswaran & Anirudh Sankar & Arun G. Chandrasekhar & Tyler H. McCormick, 2024. "Robustly estimating heterogeneity in factorial data using Rashomon Partitions," Papers 2404.02141, arXiv.org, revised Aug 2024.
    13. Aleksandr Ianevski & Kristen Nader & Kyriaki Driva & Wojciech Senkowski & Daria Bulanova & Lidia Moyano-Galceran & Tanja Ruokoranta & Heikki Kuusanmäki & Nemo Ikonen & Philipp Sergeev & Markus Vähä-Ko, 2024. "Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59431-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.