IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63964-4.html
   My bibliography  Save this article

Sensitive, high-throughput, metabolic analysis by molecular sensors on the membrane surface of mother yeast cells

Author

Listed:
  • Wenxin Jiang

    (City University of Hong Kong)

  • Huanmin Du

    (City University of Hong Kong)

  • Xingjie Huang

    (City University of Hong Kong)

  • Luke P. Lee

    (Brigham and Women’s Hospital
    Berkeley
    Berkeley
    Sungkyunkwan University)

  • Chia-Hung Chen

    (City University of Hong Kong
    City University of Hong Kong)

Abstract

Due to its genetic similarity to humans, yeast serves as a vital model organism in life sciences and medicine, allowing for the study of crucial biological processes such as cell division and metabolism for drug development. However, current tools for measuring yeast extracellular secretion lack the sensitivity, throughput, and speed required for large-scale metabolic analysis. Here, we present an ultrasensitive, large-scale analysis of yeast extracellular secretion using molecular sensors on the membrane surface of mother yeast cells. These sensors remain selectively confined to mother yeast cells during cell division, enabling high-sensitivity detection, high-throughput screening and rapid single-yeast assays. Their detection limit is 100 nM, and they can screen over 107 single cells per run. We achieve a > 30-fold speed boost compared to conventional droplet-based screening, allowing us to identify the top 0.05% of secretory strains from 2.2 × 106 variants within just 12 minutes. The platform offers potential for large-scale single-yeast metabolic analysis and bio-fabrication.

Suggested Citation

  • Wenxin Jiang & Huanmin Du & Xingjie Huang & Luke P. Lee & Chia-Hung Chen, 2025. "Sensitive, high-throughput, metabolic analysis by molecular sensors on the membrane surface of mother yeast cells," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63964-4
    DOI: 10.1038/s41467-025-63964-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63964-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63964-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leonardo Puppulin & Shigekuni Hosogi & Hongxin Sun & Kazuhiko Matsuo & Toshio Inui & Yasuaki Kumamoto & Toshinobu Suzaki & Hideo Tanaka & Yoshinori Marunaka, 2018. "Bioconjugation strategy for cell surface labelling with gold nanostructures designed for highly localized pH measurement," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Feiran Li & Yu Chen & Qi Qi & Yanyan Wang & Le Yuan & Mingtao Huang & Ibrahim E. Elsemman & Amir Feizi & Eduard J. Kerkhoven & Jens Nielsen, 2022. "Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Joseph Abatemarco & Maen F. Sarhan & James M. Wagner & Jyun-Liang Lin & Leqian Liu & Wafa Hassouneh & Shuo-Fu Yuan & Hal S. Alper & Adam R. Abate, 2017. "RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    4. Jiawei Zhu & Yaru Meng & Wenli Gao & Shuo Yang & Wenjie Zhu & Xiangyang Ji & Xuanpei Zhai & Wan-Qiu Liu & Yuan Luo & Shengjie Ling & Jian Li & Yifan Liu, 2025. "AI-driven high-throughput droplet screening of cell-free gene expression," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Zhongmin Geng & Zhenping Cao & Rui Liu & Ke Liu & Jinyao Liu & Weihong Tan, 2021. "Aptamer-assisted tumor localization of bacteria for enhanced biotherapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Pierre-Yves Colin & Balint Kintses & Fabrice Gielen & Charlotte M. Miton & Gerhard Fischer & Mark F. Mohamed & Marko Hyvönen & Diego P. Morgavi & Dick B Janssen & Florian Hollfelder, 2015. "Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huilong Luo & Yanmei Chen & Xiao Kuang & Xinyue Wang & Fengmin Yang & Zhenping Cao & Lu Wang & Sisi Lin & Feng Wu & Jinyao Liu, 2022. "Chemical reaction-mediated covalent localization of bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Elizabeth L. Bell & Gloria Rosetto & Morgan A. Ingraham & Kelsey J. Ramirez & Clarissa Lincoln & Ryan W. Clarke & Japheth E. Gado & Jacob L. Lilly & Katarzyna H. Kucharzyk & Erika Erickson & Gregg T. , 2024. "Natural diversity screening, assay development, and characterization of nylon-6 enzymatic depolymerization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Charlotte Cautereels & Jolien Smets & Peter Bircham & Dries De Ruysscher & Anna Zimmermann & Peter De Rijk & Jan Steensels & Anton Gorkovskiy & Joleen Masschelein & Kevin J. Verstrepen, 2024. "Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Lin Li & Mengxing Zhang & Jing Li & Tiantian Liu & Qixue Bao & Xi Li & Jiaying Long & Leyao Fu & Zhirong Zhang & Shiqi Huang & Zhenmi Liu & Ling Zhang, 2023. "Cholesterol removal improves performance of a model biomimetic system to co-deliver a photothermal agent and a STING agonist for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Simon d’Oelsnitz & Daniel J. Diaz & Wantae Kim & Daniel J. Acosta & Tyler L. Dangerfield & Mason W. Schechter & Matthew B. Minus & James R. Howard & Hannah Do & James M. Loy & Hal S. Alper & Y. Jessie, 2024. "Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Xiaotu Ma & Xiaolong Liang & Yao Li & Qingqing Feng & Keman Cheng & Nana Ma & Fei Zhu & Xinjing Guo & Yale Yue & Guangna Liu & Tianjiao Zhang & Jie Liang & Lei Ren & Xiao Zhao & Guangjun Nie, 2023. "Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63964-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.