IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56503-8.html
   My bibliography  Save this article

Entangling Schrödinger’s cat states by bridging discrete- and continuous-variable encoding

Author

Listed:
  • Daisuke Hoshi

    (Tokyo University of Science
    RIKEN Center for Quantum Computing (RQC))

  • Toshiaki Nagase

    (Tokyo University of Science
    RIKEN Center for Quantum Computing (RQC))

  • Sangil Kwon

    (Tokyo University of Science)

  • Daisuke Iyama

    (Tokyo University of Science
    RIKEN Center for Quantum Computing (RQC))

  • Takahiko Kamiya

    (Tokyo University of Science
    RIKEN Center for Quantum Computing (RQC))

  • Shiori Fujii

    (Tokyo University of Science
    RIKEN Center for Quantum Computing (RQC))

  • Hiroto Mukai

    (RIKEN Center for Quantum Computing (RQC)
    Tokyo University of Science)

  • Shahnawaz Ahmed

    (Chalmers University of Technology)

  • Anton Frisk Kockum

    (Chalmers University of Technology)

  • Shohei Watabe

    (Tokyo University of Science
    Shibaura Institute of Technology)

  • Fumiki Yoshihara

    (Tokyo University of Science
    Tokyo University of Science)

  • Jaw-Shen Tsai

    (RIKEN Center for Quantum Computing (RQC)
    Tokyo University of Science
    Tokyo University of Science)

Abstract

In quantum information processing, two primary research directions have emerged: one based on discrete variables (DV) and the other on the structure of quantum states in a continuous-variable (CV) space. Integrating these two approaches could unlock new potentials, overcoming their respective limitations. Here, we show that such a DV–CV hybrid approach, applied to superconducting Kerr parametric oscillators (KPOs), enables us to entangle a pair of Schrödinger’s cat states by two methods. The first involves the entanglement-preserving conversion between Bell states in the Fock-state basis (DV encoding) and those in the cat-state basis (CV encoding). The second method implements a $$\sqrt{{{{\rm{iSWAP}}}}}$$ iSWAP gate between two cat states following the procedure for Fock-state encoding. This simple and fast gate operation completes a universal quantum gate set in a KPO system. Our work offers powerful applications of DV–CV hybridization and marks a first step toward developing a multi-qubit platform based on planar KPO systems.

Suggested Citation

  • Daisuke Hoshi & Toshiaki Nagase & Sangil Kwon & Daisuke Iyama & Takahiko Kamiya & Shiori Fujii & Hiroto Mukai & Shahnawaz Ahmed & Anton Frisk Kockum & Shohei Watabe & Fumiki Yoshihara & Jaw-Shen Tsai, 2025. "Entangling Schrödinger’s cat states by bridging discrete- and continuous-variable encoding," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56503-8
    DOI: 10.1038/s41467-025-56503-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56503-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56503-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yvonne Y. Gao & Brian J. Lester & Kevin S. Chou & Luigi Frunzio & Michel H. Devoret & Liang Jiang & S. M. Girvin & Robert J. Schoelkopf, 2019. "Entanglement of bosonic modes through an engineered exchange interaction," Nature, Nature, vol. 566(7745), pages 509-512, February.
    2. Shingo Kono & Jiahe Pan & Mahdi Chegnizadeh & Xuxin Wang & Amir Youssefi & Marco Scigliuzzo & Tobias J. Kippenberg, 2024. "Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. P. Kurpiers & P. Magnard & T. Walter & B. Royer & M. Pechal & J. Heinsoo & Y. Salathé & A. Akin & S. Storz & J.-C. Besse & S. Gasparinetti & A. Blais & A. Wallraff, 2018. "Deterministic quantum state transfer and remote entanglement using microwave photons," Nature, Nature, vol. 558(7709), pages 264-267, June.
    4. Demid V. Sychev & Alexander E. Ulanov & Egor S. Tiunov & Anastasia A. Pushkina & A. Kuzhamuratov & Valery Novikov & A. I. Lvovsky, 2018. "Entanglement and teleportation between polarization and wave-like encodings of an optical qubit," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    5. Daisuke Iyama & Takahiko Kamiya & Shiori Fujii & Hiroto Mukai & Yu Zhou & Toshiaki Nagase & Akiyoshi Tomonaga & Rui Wang & Jiao-Jiao Xue & Shohei Watabe & Sangil Kwon & Jaw-Shen Tsai, 2024. "Observation and manipulation of quantum interference in a superconducting Kerr parametric oscillator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Axel M. Eriksson & Théo Sépulcre & Mikael Kervinen & Timo Hillmann & Marina Kudra & Simon Dupouy & Yong Lu & Maryam Khanahmadi & Jiaying Yang & Claudia Castillo-Moreno & Per Delsing & Simone Gasparine, 2024. "Universal control of a bosonic mode via drive-activated native cubic interactions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Youpeng Zhong & Hung-Shen Chang & Audrey Bienfait & Étienne Dumur & Ming-Han Chou & Christopher R. Conner & Joel Grebel & Rhys G. Povey & Haoxiong Yan & David I. Schuster & Andrew N. Cleland, 2021. "Deterministic multi-qubit entanglement in a quantum network," Nature, Nature, vol. 590(7847), pages 571-575, February.
    8. A. Grimm & N. E. Frattini & S. Puri & S. O. Mundhada & S. Touzard & M. Mirrahimi & S. M. Girvin & S. Shankar & M. H. Devoret, 2020. "Stabilization and operation of a Kerr-cat qubit," Nature, Nature, vol. 584(7820), pages 205-209, August.
    9. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andy Z. Ding & Benjamin L. Brock & Alec Eickbusch & Akshay Koottandavida & Nicholas E. Frattini & Rodrigo G. Cortiñas & Vidul R. Joshi & Stijn J. Graaf & Benjamin J. Chapman & Suhas Ganjam & Luigi Fru, 2025. "Quantum control of an oscillator with a Kerr-cat qubit," Nature Communications, Nature, vol. 16(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andy Z. Ding & Benjamin L. Brock & Alec Eickbusch & Akshay Koottandavida & Nicholas E. Frattini & Rodrigo G. Cortiñas & Vidul R. Joshi & Stijn J. Graaf & Benjamin J. Chapman & Suhas Ganjam & Luigi Fru, 2025. "Quantum control of an oscillator with a Kerr-cat qubit," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    2. Giulio Chiribella & Fei Meng & Renato Renner & Man-Hong Yung, 2022. "The nonequilibrium cost of accurate information processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    4. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    5. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    7. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Philipp Fey & Daniel Ludwig Weber & Jannik Stebani & Philipp Mörchel & Peter Jakob & Jan Hansmann & Karl-Heinz Hiller & Daniel Haddad, 2023. "Non-destructive classification of unlabeled cells: Combining an automated benchtop magnetic resonance scanner and artificial intelligence," PLOS Computational Biology, Public Library of Science, vol. 19(2), pages 1-31, February.
    9. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    11. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    12. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    14. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    16. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Ali Rezaei & Virág Kocsis-Jutka & Zeynep I. Gunes & Qing Zeng & Georg Kislinger & Franz Bauernschmitt & Huseyin Berkcan Isilgan & Laura R. Parisi & Tuğberk Kaya & Sören Franzenburg & Jonas Koppenbrink, 2025. "Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    18. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Jackie Grant & Mark Hindmarsh & Sergey E. Koposov, 2022. "The distribution of loss to future USS pensions due to the UUK cuts of April 2022," Papers 2206.06201, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56503-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.